

KENDRIYA VIDYALAYA SANGATHAN

AHMEDABAD REGION

ACADEMIC YEAR 2022-23

SUBJECT: MATHEMATICS

COMPENDIUM Of Diverse Questions For CLASS - X

CHIEF PATRON

SMT. SHRUTI BHARGAVA, DEPUTY COMMISSIONER, KVS, AHMEDABAD REGION

PATRON

SMT. VINITA SHARMA, ASSISTANT COMMISSIONER, KVS, AHMEDABAD REGION

UNDER THE SUPERVISION OF SHRI B M SHARMA, PRINCIPAL, KENDRIYA VIDYALAYA INS, VALSURA

CONTENT DEVELOPMENT TEAM

S NO	K V NAME	NAME OF TEACHER
1	AFS NALIYA	MR ASHISH DANGI
2	AFS SAMANA	MR VIMAL KUMAR
3	AFS BHUJ	MR TEJPAL SINGH
4	EME BARODA	MS RASHMI VERMA
5	EME BARODA	MRS URVASHI
6	AF II JAMNAGAR	MS SUCHITRA
7	AHMEDABAD CANTT	MRS KHUSHBOO JOSHI
8	NO2 INF JAMNAGAR	MRS SANTOSH
9	ONGC CHANDKHEDA	MRS PREM LATA YOGI
10	ОКНА	MR GAJENDRA SINGH
11	DHRANGADHRA	MRS PRACHI
12	BSF DANTIWADA	MRS DEEPIKA ACHARYA
13	AFS NALIYA	MR SUMIT
14	NO1 AHMEDABAD	MS POOJA NEGI
15	VALSURA	MR RAJENDER KUMAR
16	VALSURA	MR ASHOK KHANDELWAL
17	NO2 INF JAMNAGAR	MS TANUJA SHARMA
18	DWARKA	MR VARISH

TABLE OF CONTENT

S. No.	Topic/ Content	Page Number
1	Real number	1 to 17
2	Polynomials	18 to 40
3	Pair of linear equations in two variables	41 to 60
4	Quadratic equations	61 to 86
5	Arithmetic progressions	87 to 98
6	Coordinate geometry	99 to 131
7	Triangles	132 to 156
8	Introduction to trigonometry	157 to 170
9	Some applications of trigonometry	171 to 184
10	Circles	185 to 201
11	Areas related to circles	203 to 230
12	Surface areas and volumes	231 to 264
13	Statistics	265 to 294
14	Probability	295 to 307

CHAPTER: 01

REAL NUMBERS

	COMPETENCY BASED QUESTIONS					
Q1	HCF of the smallest composite number and smallest prime number is:					
	A. 4	B. 2 0	C. 4	D. 0		
Q2	If a is an odd number, b is not divisible by 3 and LCM of a and b is P then the					
	LCM of 3a a	and 2b is:				
	A. 5P	B. 3P	C. 6P	D. 2P		
Q3	What is the	e HCF of $3^3 \times 5^3$	and $3^2 \times 5^2$?			
	A. 45	B. 225	C. 15	D. 60		
Q4	If P is prim	e number then,	what is the L	CM of P, P^2 , P^3 ?		
	A. P	B. P×P	C. 0	D. P ³		
Q 5	The produc	t of three conse	cutive positiv	e integers is divis	sible by	
	A. 4	B. 6	C. 5	D. None	e of these	
Q 6	The LCM of	two numbers is	1200. Which	of the following	cannot be their HCF?	
	A. 600	B. 500	C. 40	D. 200		
Q 7	If the HCF(26,169) = 13 th	en, LCM(26,1	169)=		
	A. 26	B. 52	C. 33	38 D. 13		
Q 8	The largest	number that div	vides 70 and	125, which leave	s the remainders 5	
	and 8, is:					
	A. 65	B. 15	C. 13	D. 25		
Q 9	The least n	umber that is di	visible by all	the from 1 to 5 is	:	
	A. 70	B. 60	C. 90	D. 80		

s for			
its branches located throughout the city, with no exercise equipment left over.			
What is the greatest number of branches the gym can have in the city?			
lass			
and			
ire			
ng of			
ally			
ıd			
LCM of two numbers			

	(c) Square number	
	(d) Neither prime nor composite	
Q 2	Shilpi, a newly appointed IAS officer wants to give thank giving party	to all her
	mentors, teachers and guide who motivated and taught her to achiev	e this aim.
	She decided to give gifts to all of them. She has 36 diaries, 60 golder	n pens.
	She does not want to discriminate among her teachers, mentors and	guide so
	she decided to distribute them equally among all of them.	
(i)	How many maximum guests Shilpi can invite?	
	(a) 6 (b) 180 (c) 120 (d) 12	
(ii)	How many diaries and golden pens each guest get?	
	(a) 5 diaries and 3 golden pens	
	(b) 3 diaries and 5 golden pens	
	(c) 2 diaries and 4 golden pens	
	(d) 4 diaries and 2 golden pens	
(iii)	Shilpi decided to add 42 watches also. In this case how many maxim	um guests
	Shilpi can invite?	
	(a) 6 (b) 120 (c) 60 (d) 180	
(iv)	How many items of each will category each guest gets?	
	(a) 6 diaries, 5 golden pens and 6 watches	
	(b) 6 diaries, 5 golden pens and 5 watches	
	(c) 3 diaries, 5 golden pens and 7 watches	
	(d) 6 diaries, 10 golden pens and 7 watches	
(\mathbf{v})	If Chilpi decides to add 2 mars watches, takes 6 diaries out then wha	
(•)	If Shipi decides to add 5 more watches, takes 6 dianes out their wha	t is the
	maximum number of guests Shilpi can invite?	t is the
	(a) 12(b) 30(c) 15(d) 24	t is the
Q 3	In Shipi decides to add 3 more watches, takes 6 dianes out then what maximum number of guests Shilpi can invite? (a) 12 (b) 30 (c) 15 (d) 24 A seminar is being conducted by an educational organization, where the second s	t is the the
Q 3	In Shiph decides to add 3 more watches, takes 6 dianes out then what maximum number of guests Shilpi can invite? (a) 12 (b) 30 (c) 15 (d) 24 A seminar is being conducted by an educational organization, where the participants will be educators of different subjects the number of part	t is the the cicipants in

(i)	In each room the same number of participants are to be seated and all of them				
	being the same subject, hence maximum number of participants that can be				
	accommodated in each room are				
	(a) 14 (b) 12 (c) 16 (d) 18				
(ii)	What is the minimum number of rooms required during the event?				
	(a) 11 (b) 31 (c) 41 (d) 21				
(iii)	The LCM of 60, 84 and 108 is				
	(a) 3780 (b) 3680 (c) 4780 (d) 4680				
(iv)	The product of HCF and LCM of 60, 84 and 108 is				
	(a) 55360 (b) 35360 (c) 45500 (d) 45360				
(v)	108 can be expressed as a product of its primes as				
	(a) 2×2×2×3×3				
	(b) 2×2×2×3×3×3				
	(c) 2×2×3×3				
	(d) 2×2×3×3×3				
0.1	To ophance the reading skills of the grade V students, the school nominates				
Q 4	To enhance the reading skills of the grade X students, the school horninates				
	you and two more of your friends to set up a class library. There are two				
	sections – Section A and Section B of grade X. There are 32 students in Section				
	A and 36 students in Section B.				
(i)	What is the minimum number of books you aquire for the class library, so that				
	they can be distributed equally among students of Section A and Section B?				
	(a) 144 (b) 128 (c) 288 (d) 272				
(ii)	If the product of two positive integers is equal to the product of their HCF and				
	LCM is true then, the HCF of (32,36) is				
	(a) 2 (b) 4 (c) 6 (d) 8				
(iii)	36 can be expressed as a product of its primes as				
	(a) 2×2×3×3				

	(b) 2×3×3×3
	(c) 2×2×2×3
	(d) 2×0×3×0
(iv)	7×11×13×15 + 15 is a
	(a) Prime number
	(b) Composite number
	(c) Neither prime nor Composite
	(d) None of these
(v)	If p and q are positive integers such that $p=a \times b \times b$ and $q=a \times a \times b$, where a,b
	are prime numbers, then LCM of (p,q) is
	(a) ab (b) a×a×b×b (c) a×a×a×b×b (d) a×a×a×b×b×b
Q 5	A Mathematics Exhibition is being conducted in your School and one of your
	friends is making a model of a factor tree. He has some difficulty and asks for
	your help in completing a quiz for the audience. Observe the following factor
	tree and answer the following questions:
(i)	What will be the value of x?
	(a) 15005 (b) 13915 (c) 56920 (d) 17429
(ii)	What will be the value of y?
	(a) 23 (b) 22 (c) 11 (d) 19

(iii)	What w	What will be the value of z?						
	(a)	23	(b)	22	(c)	11	(d) 19	
(iv)	According to Fundamental Theorem of Arithmetic 13915 is a							
	(a)	Compos	ite numb	er				
	(b)	Prime n	umber					
	(c)	Neither	Composi	te noi	r prime			
	(d)	Even nu	mber					
(v)	The prir	ne prime factorisation of 13915 is						
	(a)	5×11×1	1×11×1	3×13				
	(b)	5×11×1	1×11×2	3×23				
	(c)	5×11×1	1×23					
	(d)	5×11×1	1×13×1	3				
	OBJEC	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)						
Q 1	LCM of	1 of smallest prime number and smallest composite number is						
Q 2	The leas	ast number that is divisible by all the numbers from 1 to 10 (both						
	inclusiv	e) is 2515	5. (True/I	False))			
Q 3	The gre	atest pos	sible spe	ed at	which a ma	an can	walk 135km and	225km in
	exact n	umber of	hours is	45km	ı/hr. (Agree	e/Disag	ree)	
Q 4	The LCN	ባ of two p	prime nui	nbers	s is always	1.(True	e/False)	
Q 5	The diff	erence be	etween a	ny tw	o consecuti	ve nati	ural numbers is _	
Q 6	The nur	nber of th	ne form 2	2m+5	, where m	is whole	e number is alwa	ays odd
	number	. (True/Fa	alse)					
Q 7	The larg	gest numb	per which	n divic	les 70 and	125, le	aving remainder	s 5 and 8,
	respect	ively is 8.	(True/Fa	alse)				
Q 8	The pro	duct of tw	vo conse	cutive	e natural nu	imbers	is always an eve	en number.
	(Agree/	Disagree))					

Q 9	п is number. (a rational / an irrational)
Q 10	Euler's number 'e' is an irrational number. (Agree/Disagree)
	SHORT ANSWER TYPE QUESTIONS
Q 1	If HCF of 65 and 117 is expressible in the form 65n – 117, then find the value
Q 2	The LCM of two numbers is 14 times their HCF. The sum of LCM and HCF is
	600. If one number is 280, then find the other number.
Q 3	If least prime factor of p is 3 and least prime factor of q is 5, then what is least
	prime factor of (p+q)?
Q 4	On a morning walk, three persons step out together and their steps measure
	30cm,36cm and 40cm respectively. What is the minimum distance each should
	walk so that each can cover the same in complete steps?
Q 5	Determine the smallest 3-digit number which is exactly divisible by 6, 8 and 12.
Q 6	The traffic lights at at three different road crossings change after every 48
	seconds, 72 seconds and 108 seconds respectively. If they change
	simultaneously at 7 am, at what time will they change simultaneously again?
Q 7	Determine the greatest 3-digit number which is exactly divisible by 8, 10 and
	12.
Q 8	Find the least number which when divided by 6, 15 and 18 leave remainder 4 in
	each case.
Q 9	Three farmers have 490kg, 588kg and 882kg of wheat respectively. Find the
	maximum capacity of a bag so that the wheat can be packed in exact number
	of bags.
Q 10	Three tankers contain 403 litres, 434 litres and 465 litres of diesel respectively.
	Find the maximum capacity of a container that can measure the diesel of the
	three containers exact number of times.

	LONG ANSWER TYPE QUESTIONS
Q 1	During a sale, Colom pencils were being sold in pack of 24 each and crayons in
	pack of 32 each. If you want full packs of both the same number of pencils and
	crayons, how many of each would you need to buy?
Q 2	A street shopkeeper prepares 396 gulab jamuns and 342 ras-gullas he packs
	them, in combination. Each container consists of either gulabjamuns or ras-
	gullas but have equal number of pieces. Find the number of pieces he should
	put in each box so that number of boxes are least.
Q 3	State Fundamental Theorem of Arithmetic. Is it possible that HCF and LCM of
	two numbers be 24 and 540 respectively? Justify your answer.
Q 4	Explain why $(17 \times 5 \times 11 \times 3 \times 2 + 2 \times 11)$ is a composite number?
Q 5	Find HCF of 378, 180 and 420 by prime factorisation method. Is HCF \times LCM of
	three numbers equal to the product of the three numbers?
Q 6	If n is an odd positive integer, show that $(n^2 - 1)$ is divisible by 8.
Q 7	Prove that $\sqrt{7}$ is an irrational number.
Q 8	Prove that $\sqrt{5}$ is irrational and hence show that $3 + \sqrt{5}$ is also irrational.
Q 9	Amita, Sneha, and Raghav start preparing cards for all persons of an old age
	home. In order to complete one card, they take 10, 16 and 20 minutes
	respectively. If all of them started together, after what time will they start
	preparing a new card together?
Q 10	Show that one and only one out of n, $(n + 1)$ and $(n + 2)$ is divisible by 3,
	where n is any positive integer.

CHAPTER -01

REAL NUMBER

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	B. 2
Ans 2	C. 6P
Ans 3	A. 45
Ans 4	D. P ³
Ans 5	B. 6
Ans 6	B.500
Ans 7	C.338
Ans 8	C.13
Ans 9	B. 60
Ans 10	D.9
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
Ans 1	
(i)	(C) 224
(ii)	(D) 0
(iii)	(D) 896
(iv)	(C) HCF \times LCM of 3 numbers = Product of 3 numbers
(v)	(A) Prime number

Ans 2	
(i)	(A)6
(ii)	(B)3 diaries and 5 golden pens
(iii)	(A) 6
(iv)	(D)6 diaries, 10 golden pens and 7 watches
(v)	(C)15
Ans 3	
(i)	(B)12
(ii)	(D) 21
(iii)	(A)3780
(iv)	(D)45360
(v)	(D)2×2×3×3×3
Ans 4	
(i)	(C)288
(ii)	(B)4
(iii)	(A)2×2×3×3
(iv)	(B)Composite number
(v)	(B)a×a×b×b
Ans 5	
(i)	(B)13915

(ii)	(C)11					
(iii)	(B)23					
(iv)	(A)Composite number					
(v)	(C)5×11×11×23					
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)					
Ans 1	4					
Ans 2	False					
Ans 3	Agree					
Ans 4	False					
Ans 5	1					
Ans 6	True					
Ans 7	False					
Ans 8	Agree					
Ans 9	An irrational					
Ans10	Agree					
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS					
Ans 1	Here, 117>65					
	117=65×1+52					
	65=52×1+13					
	52=13×4+0					
	Therefore HCF of 65 and 117 is 13.					
	Now,65n – 117 = 13					
	This implies 65n=13+117=130					
	n = 130/65 = 2					

Ans 2	According to the statement of the question, we have						
	LCM of two numbers = $14 \times HCF$ of two numbers						
	Also, LCM + HCF = 600						
	This implies $14 \times HCF + HCF = 600$						
	15 HCF = 600						
	HCF=40						
	Therefore LCM = $14 \times 40 = 560$						
	Now, one number is 280						
	So, $280 \times$ other number = 40×560						
	Thus, other number = $(49 \times 560)/280 = 80$ Ans						
Ans 3	Here, $(p+q)$ must be an even number which is divisible by 2.						
	Hence, the least prime factor of $(p+q)$ is 2.						
Ans 4	Here, find the LCM of 30cm, 36cm and 40cm						
	30= 2×3×5						
	36= 2×2×3×3						
	$40=2\times2\times2\times5$						
	LCM of 30,36 and $40 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 360$						
	Hence, the required minimum distance is 360 cm.						
Ans 5							
	LCM of 6, 8 and $12 = 2 \times 2 \times 2 \times 3 = 24$						
	Multiples of 24 are 24, 48, 72, 96, 120, 144,						

	Hence, the smallest 3-digit number which is exactly divisible by 6, 8 and 12
	is 120.
Ans 6	LCM of 48, 72 and $108 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 = 432$
	432 seconds = 7 min 12 seconds.
	Hence, they will change simultaneously again after 7 min 12 seconds from 7
	am.
	LCM of 8, 10 and $12 = 2 \times 2 \times 2 \times 3 \times 5 = 120$
Ans 7	Multiples of 120 are 120, 240, 360, 480, 600, 720, 840, 960, 1080,
	Hence, the greatest 3-digit number exactly divisible by 8, 10 and 12 is 960.
	LCM of 6, 15 and $18 = 2 \times 3 \times 3 \times 5 = 90$
Ans 8	Hence the required number is 90 ± 4 is 94
Ans 9	HCF of 490, 588 and 882 = $2 \times 7 \times 7 = 98$
	Hence, the maximum capacity of a bag so that the wheat can be packed in
	exact number of bags is 98kg.
Ans10	403=13×31
	434=2×7×31
	465=3×5×31
	So,HCF of 403, 434 and 465 = 31
	Hence, the maximum capacity of the container that can measure the diesel
	of the three containers exact number of times is 31 litres.
1	

	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS					
Ans 1	Number of pencils in a pack = 24					
	Number of crayons in a pack = 32					
	For buying full packs of each and same number of pencils and crayons we need to find LCM of 24 and 32.					
	$24 = 2 \times 2 \times 2 \times 3$					
	$32 = 2 \times 2 \times 2 \times 2 \times 2$					
	LCM (24, 32) = $2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96$					
	96 crayon and 96 pencils or 96/24 = 4 packs of pencils and 96/32 = 3 packs of crayons.					
Ans 2	Total number of gulab jamuns = 396					
	And total number of rasgullas = 342					
	So, the box in which the sweets are packed has equal number of either of the two.					
	Therefore, the number of sweets per box = HCF $(396, 342) = 18$					
	So, the shopkeeper must keep 18 pieces in each box so that number of boxes are least.					
Ans 3	Every Composite number can be expressed as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.					
	As HCF = 24, LCM = 540					
	Now as we all know that LCM is always a multiple of HCF.					
	Therefore LCM/HCF = $540/24 = 22.5$, Not an integer.					
	Hence two numbers cannot have HCF and LCM as 24 and 540 respectively.					

Ans 4	Given number = $17 \times 5 \times 11 \times 3 \times 2 + 2 \times 11$					
	$= 2 \times 11[17 \times 5 \times 3 + 1]$					
	$= 2 \times 11 \times [255+1] = 2 \times 11 \times 256$					
	= 2×11×2×2×2×2×2×2×2×2 = 2×2×2×2×2×2×2×2×2×11					
	Since the given number can be expressed as the product of prime numbers					
	hence it is a composite number.					
Ans 5						
	Prime factorisation of					
	378= 2×3×3×3×7					
	$189=2\times2\times3\times3\times5$					
	420= 2×2×3×5×7					
	$HCF = 2 \times 3 = 6$					
	For three positive numbers a, b and c					
	HCF (a, b, c) × LCM (a, b, c) \neq a × b × c					
Ans 6	We know that an odd positive integer n is of the form $(4q + 1)$ or $(4 + 3)$ for some integer q.					
	Case – I When n = $(4q + 1)$					
	In this case $n^2 - 1 = (4q + 1)^2 1 = 16q^2 + 8q = 8q(2q + 1)$					
	which is clearly divisible by 8.					
	Case – II When n = $(4q + 3)$					
	In this case, we have					
	$n^{2} - 1 = (4q + 3)^{2} - 1 = 16q^{2} + 24q + 8 = 8(2q^{2} + 3q + 1)$					
	which is clearly divisible by 8.					
	Hence $(n^2 - 1)$ is divisible by 8.					
Ans 7	Let us assume, to the contrary, that $\sqrt{7}$ is a rational number.					
	Then, there exist co-prime positive integers and such that					

r							
	$\sqrt{7} = a/b$, $b \neq 0$						
	So, a = $\sqrt{7}$ b						
	Squaring both sides, we have						
	$a^2 = 7b^2$ (i)						
	\Rightarrow 7 divides a ² \Rightarrow 7 divides a						
	So, we can write						
	a = 7c (where c is an integer)						
	Putting the value of $a = 7c$ in (i), we have						
	$49c^2 = 7b^2 7^2 = b^2$						
	It means 7 divides b^2 and so 7 divides b.						
	So, 7 is a common factor of both a and b which is a contradiction.						
	So, our assumption that $\sqrt{7}$ is rational is wrong.						
	Hence, we conclude that $\sqrt{7}$ is an irrational number.						
Anc 8							
Alls o	Let us assume, to the contrary, that $\sqrt{5}$ is rational.						
	So, we can find integers p and q (q \neq 0), such that						
	$\sqrt{5} = p/q$, where p and q are coprime.						
	Squaring both sides, we get						
	5 = p2/q2						
	\Rightarrow 5q ² = p ² (i)						
	\Rightarrow 5 divides p ²						
	5 divides p						
	So, let $p = 5r$						
	Putting the value of p in (i), we get						
	$5q^2 = (5r)^2$						
	\Rightarrow 5q ² = 25r ²						
	$\Rightarrow q^2 = 5r^2$						
	\Rightarrow 5 divides q ²						
	5 divides q						
	So, p and q have atleast 5 as a common factor.						
	But this contradicts the fact that p and q have no common factor.						
	So, our assumption is wrong, is irrational.						

	$\sqrt{5}$ is irrational, 3 is a rational number.					
	So, we conclude that $3 + \sqrt{5}$ is irrational.					
Ans 9	To find the earliest (least) time, they will start preparing a new card					
	together, we find the LCM of 10, 16 and 20.					
	$10 = 2 \times 5$					
	$16 = 2^4$					
	$20 = 2^2 \times 5$					
	$LCM = 2^4 \times 5 = 16 \times 5 = 80$ minutes					
	They will start preparing a new card together after 80 minutes.					
Ans10						
	Let n, $n + 1$, $n + 2$ be three consecutive positive integers.					
	We know that n is of the form $3q$, $3q + 1$, or $3q + 2$.					
	Case I. When n = 3q,					
	In this case, n is divisible by 3,					
	but $n + 1$ and $n + 2$ are not divisible by 3.					
	Case II. When $n = 3q + 1$,					
	In this case $n + 2 = (3q + 1) + 2$					
	= 3q + 3					
	= 3(q + 1), (n + 2) is divisible by 3,					
	but n and $n + 1$ are not divisible by 3.					
	Case III.					
	When $n = 3q + 2$, in this case,					
	n + 1 = (3q + 2) + 1					
	= 3q + 3 = 3 (q + 1), (n + 1) is divisible by 3,					
	but n and n + 2 are not divisible by 3.					
	Hence, one and only one out of n, $n + 1$ and $n + 2$ is divisible by 3.					

CHAPTER -02

POLYNOMIALS

	COMPETENCY BASED QUESTIONS						
Q1	If $p(x)$ is a polynomial of at least degree one and $p(k) = 0$, then k is						
	known as						
	(a) value of p(x) (b) zero of p(x)						
	(c) constant term of p(x) (c) none of these						
Q2	If $p(x) = ax^2 + bx + c$, then c/a is equal to						
	(a) 0						
	(b) 1						
	(c) sum of zeroes						
	(d) product of zeroes						
Q3	If $p(x) = ax^2 + bx + c$, then -b/a is equal to						
	(a) 0						
	(b) 1						
	(c) sum of zeroes						
	(d) product of zeroes						
Q4	The quadratic polynomial whose sum of zeroes is 3 and product of						
	zeroes is -2 is :						
	(a) $x^2 + 3x - 2$ (b) $x^2 - 2x + 3$						
	(c) $x^2 - 3x + 2$ (d) $x^2 - 3x - 2$						
Q 5	Which one of the following statements is correct						
	(a) if $x^6 + 1$ is divided by $x + 1$, then the remainder is -2.						
	(b) if $x^6 + 1$ is divided by $x - 1$, then the remainder is 2.						

	(c) if $x^6 + 1$ is divided by $x + 1$, then the remainder is 1.						
	(d) if $x^6 + 1$ is divided by x – 1, then the remainder is -1.						
0.6	The graph represents a						
QU	The graph represilets a						
	X						
	x* 0 *X						
	a) Linear polynomial b) Cubic polynomial						
	c) Quadratic polynomial d) Zero polynomial						
0.7	If $x^3 \pm 11$ is divided by $x^2 = 3$, then the possible degree of remainder is						
	$x^{2} + 11$ is divided by $x^{2} - 3$, then the possible degree of remainder is						
	(b) 1						
	(c) 2						
	(d) less than 2						
Q 8	If $x^5 + 2x^4 + x + 6$ is divided by g(x), and quotient is $x^2 + 5x + 7$, then						
	the possible degree of $g(x)$ is:						
	(a) 4						
	(b) 3						
	(c) 2						
	(d) 5						
Q 9	Zeroes of a polynomial can be expressed graphically. Number of						
	zeroes of polynomial is equal to number of points where the						
	graph of polynomial is:						
	(a) Intersects x-axis						
	(b) Intersects y-axis						
	(c) Intersects y-axis or x-axis						
	(d) None of the above						

Q10	If one of the zeroes of a quadratic polynomial $ax^2 + bx + c$ is 0, then					
	the other zero is					
	(a) -b/a					
	(b) 0					
	(c) b/a					
	(d) –c/a					
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS					
QI	Steel Frame					
	Amit's company is going to make frames as part of a new product they					
	are launching. The frame will be cut out of a piece of steel, and to keep					
	the weight down, the final area should be 28 cm². The inside of the					
	frame has to be 11 cm by 6 cm.					
	A=28					
	6					
(i)	What is the Polynomial of the area of steel before cutting and also write					
	the degree of the polynomial obtained?					
(ii)	Find the zeros of the polynomial for the area of steel after cutting out					
	the 11 × 6 middle					
(iii)	From the graph find the value of x.					
	Area					
	$\frac{1}{40}$ $4x^2 \cdot 34x$					
	(-9.3, 28) Aneo = 28, 30 (0.8, 28)					
	0					
	40					
	.70					
(iv)	If $x = 5$ inches then the area of steel before cutting is .					
	· · · · · · · · · · · · · · · · · · ·					
(v)	Find the perimeter of the steel frame in the given diagram.					

Q II	Path of the Ball.						
	Football is played with a spherical ball. Usually, football is played						
	outdoors on a large field. The projectile (path traced) of football in						
	form of parabola	a representing qu	adratic polynomial.				
)	3			
(i)	The shape of the path traced shown is						
	a) Spiral b) Ellipse						
	c) Linear d) Parabola						
(ii)	The graph of parabola opens upwards, if						
	a) a = 0 b) a < 0						
	c) a > 0 d) a ≥ 0						
(iii)	Observe the fo	llowing graph a	and answer				
	In the above gra	aph, how many zo	eroes are there for th	e polynomial?			
	a) 0 b) 1 c) 2 d) 3						

(iv)	The three zeroes in the above shown graph are							
	a) 2, 3,-1		b) -2, 3, 1					
	c) -3, -1, 2		d) -2, -3, -1					
(v)	What will be the expression of the polynomial?							
	a) x ³ + 2x ² -	5x – 6						
	b) x ³ + 2x ² -	5x + 6						
	c) x ³ + 2x ² +	5x – 6						
	d) x ³ + 2x ² +	5x + 6						
Q III	Yoga Asanas	5						
	An asana is a sitting meditar yoga as exercised standing, investigation observe that polynomial.	body posture, ori tion pose, and lat ise, to any type o erted, twisting, an poses can be relat	ginally and still a g er extended in hath f pose or position, d balancing poses. red to representation	eneral term for a na yoga and modern adding reclining, In the figure, one can on of quadratic				
(i)	The shape of t	the poses shown i	S					
	a) Spiral	b) Ellipse	c) Linear	d) Parabola				

	$h(t) = 0.3t^3 - 5t^2 + 21t,$
	where "t" is the time in seconds and "h" is the height in feet.
	Classify this polynomial by degree and by number of terms.
(ii)	Graph the polynomial function for the height of the roller coaster on the coordinate plane at the right. From the graph, find the maximum height of the roller coaster
	25 2 2 2 4 4 6 8
(iii)	Find the height of the coaster at $t = 0$ seconds. Explain why this answer
	makes sense
(iv)	Find the height of the coaster 9 seconds after the ride begins. Explain
	how you found the answer.
(v)	Evaluate h(2)
QV	Water Tank
	A builder wants to build a sump to store water in an apartment. He planned in such a way that its base dimensions are $(x + 1)$ and $(x - 2)$.
(i)	Find how much he has to dig so that the volume of the rectangular prism will be $f(x) = x^4 + 2x^3 - 4x^2 - 7x - 2$.
(ii)	If $y = 10$ units what is the volume of the sump

(iii)	If $x = 10$ and the builder wants to paint the outer portion on the sump,
	what is the cost of painting, if the cost of paint is Rs. 25/ per square
	unit.
(iv)	If the builder wants to close the sump, what is the cost of painting?
(v)	If the inner walls the tank needs to be coated at the rate of Rs.50 per sq
	m. What is the total cost of coating ? (Ignore the thickness of walls)
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	Write the coefficient of \mathbf{x}^2 in each of the following?
	i)2x ² +x+3 ii) x ³ -9x ² +7x+3
Q 2	The maximum number of zeroes that a polynomial of degree 4 can have is
Q 3	A quadratic polynomial whose sum of the zeroes is 2 and product is 1 is given by
Q 4	Number(s) of zeroes that a cubic polynomial has/have
Q 5	If one zero of the quadratic polynomial $x^2 + 3x + b$ is 2, then the value of b is
Q 6	Zeroes of $p(z) = z^2 - 27$ are and
Q 7	From the graph what are the zeroes of the polynomial:
	$X = \begin{pmatrix} (-1, 3) \\ (-3, -15) \\ $
Q 8	The number of zeroes of a zero polynomial

Q 9	Find the number of zeros in following case.			
	a)	b)	c)	d)
	x a x	* A.		x
Q 10	State whether the following statements are True or False			e
	i. A trinomial can have atmost three terms.			
	ii. Every polynomia	l is a Binomial.		
	iii. A binomial may have degree 5.			
	iv. Zero of a polynomial is always 0.			
	v. A polynomial cannot have more than one zero.			
	vi. The degree of the sum of two polynomials each of degree 5 is always			
	5.			
	SHORT ANSWER	TYPE QUESTIONS		
Q 1	If a and β are the z of $a^2 + \beta^2$	zeroes of the polyno	mial $ax^2 + bx + c$, find the value
Q 2	If the sum of the zero is 1, then find the	eroes of the polynor value of k.	nial $p(x) = (k^2 - 3)$	14) x ² - 2x - 12
Q 3	If a and β are the z 5, then find the po	zeroes of a polynom lynomial.	al such that a + ($3 = -6$ and $\alpha\beta =$
Q 4	Find a quadratic pc and $-\sqrt{2}$ respective	lynomial, the sum a ly	nd product of wh	ose zeroes are 0
Q 5	Find the zeroes of trelationship between	the quadratic polync en the zeroes and th	mial 3x ² – 75 and e coefficients	d verify the
Q 6	If the square of the $f(x)=x^2+px+45$ is a	e difference of the ze equal to 144 , find t	eros of the quadra ne value of p.	atic polynomial
Q 7	Find the value of 'k $x^2 - (k+6)x + 2(2k+1)$	' such that the qua	dratic polynomial cros is half of thei	r product.
Q 8	If a and β are the f(x)=x ² -p(x+1)-c	he zeros of the quad , show that (a +1)	ratic polynomial (β +1)=1-c.	

Q 9	If one zero of the quadratic polynomial $f(x)=4x^2-8kx-9$ is negative of the other, find the value of 'k'.
Q 10	Determine whether the given values of x are zeroes of the given polynomials or not x^2+6x+5 , x=-1 and x=-5.
	LONG ANSWER TYPE QUESTIONS
Q 1	Find the values of a and b so that $x^4 + x^3 + 8x^2 + ax - b$ is divisible by $x^2 + 1$.
Q 2	If a polynomial $3x^4 - 4x^3 - 16x^2 + 15x + 14$ is divided by another polynomial $x^2 - 4$, the remainder comes out to be $px + q$. Find the value of p and q.
Q 3	Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{(5/3)}$ and $\sqrt{(5/3)}$.
Q 4	If 4 is a zero of the cubic polynomial $x^3 - 3x^2 - 10x + 24$, find its other two zeroes.
Q 5	If $p(x) = x^3 - 2x^2 + kx + 5$ is divided by $(x - 2)$, the remainder is 11. Find k. Hence find all the zeroes of $x^3 + kx^2 + 3x + 1$. (2012)
Q 6	Obtain all other zeros of $(x^4 + 4x^3 - 2x^2 - 20x - 15)$ if two of its zeros are $\sqrt{5}$ and $-\sqrt{5}$.
Q 7	If $(x + 1)$ and $(x - 2)$ are the factors of the polynomial $x^3 + kx^2 + hx + 6$ then find the value of h and k
Q 8	If a and $\boldsymbol{\beta}$ are the zeros of the polynomial
	$f(x)=x^2+px+q~$, find polynomial whose zeros are $(a+\beta)^2$ and $(a-\beta)^2.$
Q 9	What must be subtracted from the polynomial $f(x)=x^4+2x^3-13x^2-12x+21$ so that the resulting polynomial is exactly divisible by $g(x)=x^2-4x+3$.
Q 10	One factor of the polynomial $f(x) = 3x^3 + ax^2 + 4x + b$ is $(x + 2)$. If it is divided by $(x - 3)$ then a remainder of – 5 is left. Find the values of a and b.

CHAPTER-02

POLYNOMIALS

SOLUTIONS OF THE PROBLEMS

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(b) zero of p(x)
Ans 2	(d) product of zeroes
Ans 3	(c) sum of zeroes
Ans 4	(d) $x^2 - 3x - 2$
Ans 5	b) 2
	$p(x) = x^6 + 1$ when divided by x − 1, then remainder = $p(1)$ $\therefore p(1) = 1^6 + 1 = 2$
Ans 6	C) Quadratic polynomial
Ans 7	d) less than 2
Ans 8	3
Ans 9	(a) Intersects x-axis
Ans 10	a) -b/a
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
I	Steel Frame
i)	$(2x+11)(2x+6)=4x^2+34x+66$ Degree 2
ii)	$P(x)=(11+2x) (6+2x)- (66)= 66+22x+12x+4x^2 - 66= 4x^2+ 34x = x(4x-34)$
	0 = x(4x-34)
	Thus ,
	x=0 and x = 17/2
iii)	x=0 and x=-8.5

iv)	Area= $p(x)=(11+2x)(6+2x) = 4x^2+34x+66$
	P(5)= 4(25) +34 (5) +66
	= 100 + 170 + 66
	= 336 sq m
v)	P outer= 2 ($I+b$) = 2 ($11+2x + 6+2x$) = 2 ($17+4x$) = $8x+34$
	P inner = 2(6+11) = 34
	P inner + outer = $8x+68$
II	Path of the Ball.
i)	d) Parabola
ii)	c) a > 0
iii)	d) 3
iv)	c) -3, -1, 2
	a) $x^3 + 2x^2 - 5x - 6$
•)	
	Vere Access
111	roga Asanas
i)	d) Parabola
ii)	c) a < 0
iii)	c) 2
iv)	b) -2, 3

V)	$\sqrt{3x^2 - 6x - 2x + 4\sqrt{3}} = \sqrt{3x} (x - 2\sqrt{3}) - 2(x - 2\sqrt{3}) = (x - 2\sqrt{3}) (\sqrt{3x} - 2)$
	c) 2/√3, 2√3
IV	Roller Coaster Ride
i)	Cubic & Trinomial
ii)	25 feet
iii)	h(0)=0 This means that the ride starts on the ground
iv)	The answer is 2.7 feet found by substituting $x = 9$ in the equation
V)	$h(t) = 0.3t^3 - 5t^2 + 21t$
	=0.3 (8) - 5 (4) +21 (2) = 2.4-20+42=24.2
V	Water Tank
i)	$x^{4}+ 2x^{3}- 4x^{2}- 7x - 2 \div (x+1) (x-2) = x^{4}+ 2x^{3}- 4x^{2}- 7x - 2 \div [x^{2}-x-2]$
	$= x^2 + 3x + 1$
ii)	volume = $f(10) = 11,528$
iii)	Area = 2 [$(x + 1) x (x^2+3x+1) + (x - 2) (x^2+3x+1)$]
iii)	Area = 2 [$(x + 1) x (x^2+3x+1) + (x - 2) (x^2+3x+1)$] = 2 [$11x131 + 8x131$]
iii)	Area = 2 [$(x + 1) x (x^2+3x+1) + (x - 2) (x^2+3x+1)$] = 2 [$11x131 + 8x131$] = 2 x 131 x 19
iii)	Area = 2 [$(x + 1) x (x^2+3x+1) + (x - 2) (x^2+3x+1)$] = 2 [$11x131 + 8x131$] = 2 x 131 x 19 = 4978
iii)	Area = 2 [$(x + 1) x (x^{2}+3x+1) + (x - 2) (x^{2}+3x+1)$] = 2 [$11x131 + 8x131$] = 2 x 131 x 19 = 4978 Total Cost = Area x cost per sq m = 4978 x25 = Rs. 1,24,450
iii) iv)	Area = 2 [$(x + 1) \times (x^{2}+3x+1) + (x - 2) (x^{2}+3x+1)$] = 2 [$11x131 + 8x131$] = 2 x 131 x 19 = 4978 Total Cost = Area x cost per sq m = 4978 x25 = Rs. 1,24,450 Area added to be painted =base area = (x + 1) (x - 2) = 11 x 8 =88 sq m
iii) iv)	Area = 2 [(x + 1) x (x ² +3x+1) + (x -2) (x ² +3x+1)] = 2 [11x131 + 8x131] = 2 x 131 x 19 = 4978 Total Cost = Area x cost per sq m = 4978 x25 = Rs. 1,24,450 Area added to be painted =base area = (x + 1) (x -2) = 11 x 8 =88 sq m Cost added for painting = 88 x 25 =2200 Rs
iii) iv)	Area = 2 [(x + 1) x (x ² +3x+1) + (x -2) (x ² +3x+1)] = 2 [11x131 + 8x131] = 2 x 131 x 19 = 4978 Total Cost = Area x cost per sq m = 4978 x25 = Rs. 1,24,450 Area added to be painted =base area = (x + 1) (x -2) = 11 x 8 =88 sq m Cost added for painting = 88 x 25 =2200 Rs Final cosy = 124450+ 2200 = 1,26,650 Rs.
iii) iv)	Area = 2 [$(x + 1) \times (x^{2}+3x+1) + (x - 2) (x^{2}+3x+1)$] = 2 [$11x131 + 8x131$] = 2 x 131 x 19 = 4978 Total Cost = Area x cost per sq m = 4978 x25 = Rs. 1,24,450 Area added to be painted =base area = (x + 1) (x - 2) = 11 x 8 =88 sq m Cost added for painting = 88 x 25 =2200 Rs Final cosy = 124450+ 2200 = 1,26,650 Rs.

	Total cost of coating = 5066 x50 = R	s. 2,53,300
	Solution of Objective Questions Other	than MCQ
1	(i) 2 ii) -9	
2	4	
3	$x^2 - 2x + 1$	
4	3	
5	b = -10	
6	+3√3,-3√3	
7	(-2,0), (0,0) & (2,0)	
8	Infinite	
9	a) There is no zero as the graph does no	ot intersect the X-axis.
	b) 4 c) 3 d) 3	
10	i. False. A trinomial has exactly three terms.	
	ii. False. Every polynomial is not a binomial.	
	iii. True.Binomial is a polynomial whose degree is a equal to one. So, it may have degree 5.	whole number greater than
	iv. False. Zero of a polynomial can be any real numb	er.
	v. False, A polynomial can have any number of zero degree of the polynomial.	es. It depends upon the
	vi. False. The degree of the sum of any two polynom always the same. For example; Let $f(x) = x^4 + 2$	ials of same degree is not
	$a(x) = -x^4 + 4x^3$	Degree 4
	Sum= $f(x)+g(x) = x^4+2 - x^4+4x^3 = 4x^3+2$	Degree 3

	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS				
1	$\alpha + \beta = -b/a$, $\alpha \beta = c/a$				
	$a^2 + \beta^2 = (a + \beta)^2 - 2a\beta$				
	$= (-b/a)^2 - 2(c/a)$				
	$= b^2/a^2 - 2c/a$				
	$= b^2 - 2ca / a^2$				
2	$p(x) = (k^2 - 14) x^2 - 2x - 12$				
	Here $a = k^2 - 14$, $b = -2$, $c = -12$				
	Sum of the zeroes, $(a + \beta) = 1$ [Given]				
	$\Rightarrow -b/a = 1$				
	$\Rightarrow -(-2)k^2 - 14 = 1$				
	\Rightarrow k ² - 14 = 2				
	\Rightarrow k ² = 16				
	\Rightarrow k = ±4				
3	Quadratic polynomial is $x^2 - Sx + P$				
	$\Rightarrow x^2 - (-6)x + 5$				
	$\Rightarrow x^2 + 6x + 5$				
4.					
	The sum of roots is $a-b=0 \Rightarrow b=0$				
	The product of roots is $a/c=-1 \Rightarrow c=-a$				
	So the Quadratic polynomial is ax ² -a				
5	Let, $f(x)=3x^2-75=0$				
	$\Rightarrow 3x^2 - 75 = 0$				
	⇒x ² -25=0				
	⇒(x-5)(x+5)=0				
	⇒x=-5,5				
	So, zeros of quadratic equation are 5 and -5				
	1				
---	---	--	--	--	--
	Verification:				
	Sum of zeros = $-coefficient$ of x / coefficient of x^2				
	=-0/3				
	=0				
	Also sum of zeroes = $-5+5=0$				
	And,				
	Product of zero =constant term/ coefficient of x^2				
	=-753				
	=-25				
	Product of zeroes $=-5x5=-25$				
	Hence verified.				
6	It is given that ($\alpha - \beta$) ² =144				
	From the given quadratic polynomial, $f(x)=x^2+px+45$				
	The sum of the roots, $a + \beta = -p$ and the product of the				
	roots, $\alpha\beta = 45$.				
	Since, $(a - \beta)^2 = 144$				
	$\Rightarrow a^{2} + \beta^{2} - 2 a\beta = 144$				
	$\Rightarrow (\alpha + \beta)^{2} - 4 \alpha\beta = 144$				
	Substituting, $a + \beta = -p$ and $a\beta = 45$ we get:				
	⇒(-p) ² -4×45=144				
	⇒p ² =144+180				
	⇒p ² =324				
	Therefore, $n=\pm 18$				

7	It is given that, Sum of the zeros $=1/2 \times Product$ of the zeros.
	From the given quadratic polynomial,
	$x^{2}-(k+6)x+2(2k+1)$
	the sum of the zeros $=(k+6)$ and
	product of the zeros $=2(2k+1)$.
	Hence,
	\Rightarrow (k+6) =12[2(2k+1)]
	⇒k+6=2k+1
	⇒k=5.
8	It is given that α and β are the roots of the quadratic polynomial
	$f(x)=x^2-p(x+1)-c.$
	$f(x)=x^2-px-(p+c)$
	$\therefore a + \beta = p \text{ And } a\beta = -(p+c)$
	Thus,
	$\Rightarrow (a + 1)(\beta + 1) = a\beta + (a + \beta) + 1$
	$\Rightarrow (a + 1)(\beta + 1) = -p - c + p + 1$
	$\Rightarrow (a + 1)(\beta + 1) = 1 - c.$
9	It is given that one zero of the quadratic polynomial
	$f(x)=4x^2-8kx-9$ is the negative of the other,
	Let us take one zero to be a, then the other is $-a$
	Hence, the sum of the zeros $= 0$
	⇒-b/a = 0
	⇒8k/4=0
	⇒k=0
10.	$P(x) = x^2 + 6x + 5$
	$P(-1) = (-1)^2 + 6(-1) + 5 = 1 - 6 + 5 = 0$ therefore x=-1 is a zero
	$D(E) = (E)^2 + 6(E) + E = 2E = 20 + E = 0 + horofore x = E is a zero$
	$r(-3) = (-3)^{-1} + 0(-3) + 3 = 23 - 30 + 3 = 0$ therefore x=-5 is a zero

	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS			
1.	$x^{2}+1 \int x^{4} + x^{3} + 8x^{2} + ax - b (x^{2}+x+7)$			
	(-) $x^4 + x^2$			
	$X^3 - 7x^2 + ax - b$			
	<u>(-) X³ +x</u>			
	-7x ² + (a-1) x -b			
	$-7x^2$ +7			
	<u>(a-1) x- b-7</u>			
	If $x^4 + x^3 + 8x^2 + ax - b$ is divisible by $x^2 + 1$			
	Remainder = 0			
	(a – 1) x – b – 7 = 0 (a – 1) x + (-b – 7) = 0 , x + 0			
	a - 1 = 0, -b - 7 = 0			
	a = 1, b = -7 a = 1, b = -7			
2				
	$x^{2}-4 \overline{)}^{3}x^{4} - 4x^{3} - 16x^{2} + 15x + 14 (3x^{2}-4x-4)$			
	(-) $3x^4 - 12x^2$			
	$-4x^3 - 4x^2 + 15x + 14$			
	$(-) - \frac{4x^3}{16x}$			
	$-4x^2 - x + 14$			
	(-) $-4x^2 + 16$			
	<u>-x -2</u>			
	Remainder =-x-2			
	px+q = -x-2			
	p=-1, q=-2			
3	Since this is a polynomial of degree 4, hence there will be a total of 4 roots.			
	√ (5/3) and - $√$ (5/3) are zeroes of polynomial f(x). ∴ [x- $√$ (5/3)] [x+ $√$ (5/3)] = x ² -(5/3)			
	$x^{2}-4 \overline{)}3x^{4} + 6x^{3} - 2x^{2} - 10x - 5(3x^{2} + 6x + 3)$			

(-) 3x⁴ -5x² $-6x^3 + 3x^2 - 10x - 5$ (-) - $6x^3$ - 10x 3x² -5 (-) $3x^2$ -5 0 Therefore, $3x^2 + 6x + 3 = 3x(x + 1) + 3(x + 1)$ = (3x + 3)(x + 1)= 3(x + 1)(x + 1)= 3(x + 1)(x + 1)Hence, x + 1 = 0 i.e. x = -1, -1 is a zero of p(x). So, its zeroes are given by: x = -1 and x = -1. Therefore, all four zeroes of the given polynomial are: $\sqrt{(5/3)}$ and $\sqrt{(5/3)}$, -1 and -1. Given cubic polynomial is $p(x) = x^3 - 3x^2 - 10x + 24$ 4 4 is a zero of p(x). So, (x - 4) is the factor of p(x). Let us divide the given polynomial by (x - 4). x-4 $\int x^3 - 3x^2 - 10x + 24$ (x²+ x-6 (-) $x^3 - 4x^2$ $x^2 - 10x + 24$ (-) - <u>x²</u> - 4x -6x + 24 (-) <u>-6x + 24</u> 0 Here, the quotient = $x^2 + x - 6$ $= x^{2} + 3x - 2x - 6$ = x (x + 3) - 2(x + 3)= (x - 2) (x + 3)Therefore, the other two zeroes of the given cubic polynomial are 2 and -3.

5
$$p(x) = x^3 - 2x^2 + kx + 5,$$

When $x - 2,$
 $p(2) = (2)^3 - 2(2)^2 + k(2) + 5$
 $\Rightarrow 11 = 8 - 8 + 2k + 5$
 $\Rightarrow 11 - 5 = 2k$
 $\Rightarrow 6 = 2k$
 $\Rightarrow k = 3$
Let $q(x) = x^3 + kx^2 + 3x + 1$
 $= x^3 + 3x^2 + 3x + 1$
 $= x^3 + 1x^2 + 3x$
 $= (x)^3 + (1)^3 + 3x(x + 1)$
 $= (x + 1)^3$
 $= (x + 1) (x + 1) (x + 1) ...[: a^3 + b^3 + 3ab (a + b) = (a + b)^3]$
All zeroes are:
 $x + 1 = 0 \Rightarrow x = -1$
 $x + 1 = 0 \Rightarrow x = -1$
 $x + 1 = 0 \Rightarrow x = -1$
Hence zeroes are -1, -1 and -1.
6 The given polynomial is $f(x) = x^4 - 4x^3 - 2x^2 - 20x - 15$
Since $(x - \sqrt{5})$ and $(x + \sqrt{5})$ are the zeroes of $f(x)$
it follows that each one of $(x - \sqrt{5})$ and $(x + \sqrt{5})$ is a factor of $f(x)$. On
dividing $f(x)$ by $(x2 - 5)$, we get
 $x^2 - 5 \int x^4 - 4x^3 - 2x^2 - 20x - 15 (x^2 + 4x + 3)$
(-) $\frac{-4x^3}{-3x^2 - 15}$
(-) $\frac{-3x^2 - 15}{-3x^2 - 15}$
(-) $\frac{-4x^3 - 2x^2 - 20x - 15 = 0$

	$(x^2-5)(x^2+4x+3) = 0$
	$(x - \sqrt{5}) (x + \sqrt{5}) (x+1) (x+3) = 0$
	$X = \sqrt{5}$, $-\sqrt{5}$, -1 , -3 are the zeroes
7	Let $f(x) = x^3 + kx^2 + hx + 6$ If $(x + 1)$ and $(x - 2)$ are the factors of $f(x)$, then f(-1) = 0 and $f(2) = 0\therefore f(-1) = (-1)^3 + k(-1)^2 + h(-1) + 6 = 0\Rightarrow -1 + k - h + 6 = 0\Rightarrow k - h + 5 = 0(1)and f(2) = (2)^3 + k(2)^2 + h(2) + 6 = 0= 8 + 4k + 2h + 6 = 0\Rightarrow 4k + 2h + 14 = 0(2)Solving equation (1) and (2)Multiplying equation (1) by 2 and adding to equation (2)2k - 2h = -10$
	$\frac{4k + 2h = -14}{6k}$
	K= -4
	Putting the value of ft in equation (1) k - h = -5 $\Rightarrow -4 - h = -5$ $\Rightarrow -h = -5 + 4 = -1$ $\Rightarrow h = 1$ Hence we get $h = 1$ and $k = -4$.
8	If the zeros of the polynomial $f(x)=x^2+px+q$ are taken as a and β .
	$a+\beta=-p$ $a\beta=q$ $(a+\beta)^2=p^2$ $(a-\beta)^2=(a+\beta)^2-4a\beta$ $=p^2-4q$

	New Roots are $(\alpha+\beta)^2$ and $(\alpha-\beta)^2$				
	$Sum=(a+\beta)^2 + (a-\beta)^2$				
	$=p^{2}+p^{2}-4q$				
	$=2(p^2-2q)$				
	$Product = (a+\beta)^2 (a-\beta)^2$ $= p^2(p^2 - 4a)$				
	$-p(p^{-4}q)$ Therefore $f(x) = K [x^2 - 2(p^2 - 2q)x + p^2(p^2 - 4q)]$				
9	$P(x) = x^4 + 2x^3 - 13x^2 - 12x + 21$				
	$\pi(x) = x^2 + 4x + 2$				
	$g(x) = x^2 - 4x + 3$				
	P(x) = q(x) g(x) + r				
	Dividend = Quotient× Divisor + Remainder				
	P(x) = q(x) g(x) + r(x)				
	P(x) - r(x) = q(x) g(x)				
	$x^{2} - 4x + 3 \int x^{4} + 2x^{3} - 13x^{2} - 12x + 21$ ($x^{2} + 6x + 8$				
	(-) $x^4 - 4x^3 + 3x^2$				
	$6x^3 - 16x^2 - 12x + 21$				
	(-) $6x^3 - 24x^2 + 18x$				
	8x ² -30x +21				
	(-) 8x ² - 32x + 24				
	<u>2x -3</u>				
	r(x) = 2x - 3				
	Therefore, $r(x) = 2x - 3$ has to be subtracted so that resulting				
	polynomial is divisible by g(x)				
10.	$f(x) = 3x^3 + ax^2 + 4x + b$				
	Its factor is $(x + 2)$. Therefore,				
	$f(-2) = 3(-2)^3 + a(-2)^2 + 4(-2) + b = 0$				

 \Rightarrow - 24 + 4a - 8 + b =0 \Rightarrow 4a + b - 32 = 0(1) and adding + 5 the factor is (x - 3). Hence $f(x) = 3x^3 + ax^2 + 4x + b$ $f(3) + 5 = 3(3)^3 + a(3)^2 + 4 \times 3 + b + 5 = 0$ $\Rightarrow 81 + 9a + 12 + b + 5 = 0$ \Rightarrow 9a + b + 98 = 0(2) Solving equations (1) and (2) 9a + b = -984a + b = 32- - -5a = -130a = -26 Putting the value of a in equation (1) 4a + b = 324(-26) + b = 32-104 + b = 32b = 104 + 32 = 136Therefore a = -26, b = 136

CHAPTER: 03

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

	COMPETENCY BASED QUESTIONS			
Q1	The value of k for which the system of equations $x + y - 4 = 0$ and			
	2X + ky - 3 = 0, has no solution, is			
	(a) -2	(b) ≠2	(c) 3	(d) 2
Q2	If a pair of linear equations is consistent, then the lines will be			
	(a) parallel		(b) a	lways coincident
	(c) intersectin	g or coincident	(d) al	ways intersecting
Q3	The pair of equations $y = 0$ and $y = -7$ has			
	(a) one soluti	on	(b) tw	o solutions
	(c) infinitely m	nany solutions	(d) no	solutions
Q4	x and y are two different digits. If the sum of the two digit numbers			
	formed by using both the digits is a perfect square, then value of $x + y$			
	is			
	(a) 10	(b) 11	(c) 12	(d) 13
Q 5	The pair of linear e	equations 2kx + 5	y = 7, 6x - 5	y= 11 has a unique
	solution, if			
	(a) k ≠-3	(b) k $\neq \frac{2}{3}$	(c) k ≠5	(d) k $\neq \frac{2}{9}$
Q 6	One equation of a	pair of dependent	: linear equat	ions $-5x + 7y = 2$.
	The second equati	on can be		
	(a) 10x + 14y	y + 4 = 0	(b) -1	0x - 14y - 4 = 0
	(c) -10x + 14	y + 4 = 0	(d) 10	0x - 14y = -4

Q 7	If $x = a$ and $y = b$ is the solution of the equations $x - y = 2$ and			
	x + y = 4, then the	he values of a an	d b are, respectiv	rely
	(a) 3 and 5	(b) 5 and 3	(c) 3 and 1	(d) -1 and -3
Q 8	The pair of equat	ions $x = a$ and y	= b graphically re	epresents lines
	which are			
	(a) parallel		(b) intersed	cting at (b, a)
	(c) coincide	nt	(d) intersec	ting at (a, b)
Q 9	For what value of	k, do the equati	ons $3x - y + 8 =$	0 and
	6x - ky = -16	represent coincid	ent lines?	
	(a) $\frac{1}{2}$	(b) $\frac{-1}{2}$	(c) 2	(d) - 2
	2	Ζ		
Q10	The pair of equati	ions x + 2y + 5 =	= 0 and -3x - 6y	+ 1 = 0 represents
	(a) Parallel lir	nes	(b) Inter	secting lines
	(c) Coinciden	t lines	(d) None	e of these
	CASE STUDI	ES/ SOURCE BA	ASED INTEGRAT	ED QUESTIONS
Q 1	MASK: Masks are	an additional ste	ep to help prevent	t people from
	getting and sprea	ding COVID-19.	They provide a ba	arrier that keeps
	respiratory drople	ets from spreadin	ig. Wear a mask a	and take every day
	preventive action	s in public setting	gs.	
	Due to ongoing C	orona virus outb	reak, Wellness Me	edical store has
	started selling ma	asks of decent qu	ality. The store is	selling two types of
	masks currently t	type A and type E	3.	
		₹ 15		₹ 20

	The cost of type A mask is Rs. 15 and of type B mask is Rs. 20. In the				
	month of April, 2020, the store sold 100 masks for total sales of Rs.				
	1650.				
(i)	How many mas	ks of type A were	e sold in the mo	nth of April?	
	(a) 70	(b) 30	(c) 50	(d) 60	
(ii)	How many mas	ks of type B were	e sold in the mo	nth of April?	
	(a) 40	(b) 50	(c) 30	(d) 70	
(iii)	If the store had	sold 50 masks o	of each type, wh	at would be its sales in	
	the month of Ap	oril?			
	(a) 2000	(b) 1750	(c) 2150	(d) 1800	
(iv)	If the cost of ty	pe A mask would	I have been Rs.2	20 and of type B mask	
	be Rs.25, then total sale for the month of April would be				
	(a) 2050	(b) 1650	(c) 1750	(d) 2150	
(v)	The pair of linea	ar equations form	ned here represe	ents	
	(a) Paralle	lines	(b) I	ntersecting lines	
	(c) Coincide	ent lines	(d) N	one of these	
Q 2	Mr. RK Agrawal	is owner of a far	nous amusemer	nt park in Delhi. The	
	ticket charge for the park is Rs 150 for children and Rs 400 for adult.				
	9		· - A		
		Mr.	0		
		10			

	Generally he does not go to park and it is managed by team of staff.				
	One day Mr. Agrawal decided to random check the park and went				
	there. When he checked the cash counter, he found that 480 tickets				
	were sold and Rs 134500 was collected.				
(1)	Let the number of children visited be x and the number of adults				
	visited be y. Which	of the following	g is the correct sy	stem of equations	
	that model the prob	lem?			
	(a) x + y = 480,	3x + 8y = 269	90		
	(b) $x + y = 240$,	30x + 40y = 3	134500		
	(c) $5x + 3y = 26$	90, 150x + 40	00y = 134500		
	(d) $x + 3y = 140$), x + y = 4500	D		
(ii)	How many children	visited the nar	·k2		
		visited the par	κ:		
	(a) 340	(b) 140	(c) 230	(d) 190	
(iii)	How many adults vi	sited the park	?		
	(-) 270	(4) 250	(-) 100		
	(a) 270	(D) 250	(C) 180	(a) 220	
(iv)	How much amount	collected if 300) children and 35	0 adults visited the	
	park?				
	(a) 150000	(b) 160000	(c) 185000	(d) 225000	
	(4) 200000	(5) 200000	(0) 200000	(0) ======	
(v)	The pair of linear ec	juations in the	problem here rep	present the lines	
	which are				
	(a) consistent (b)) inconsistent	(c) coincident	(d) none of these	
Q 3	Architect: An archite	ect is a skilled	professional who	plans and designs	
	buildings and gener	allv plavs a ke	v role in their cor	struction. Architects	
	are highly trained in the art and science of huilding design. Since they				
	bear responsibility f	or the safetv o	f their buildinas'	occupants,	
	architects must be r	professionally I	icensed.	. ,	
	Varcha is a licensed	architact and	docian yony inno	vativo houso Sha	
			uesign very mino	valive nouse. She	
	nas made a nouse la	ayout for ner c	ment which is give	en below. In the	

	layout, the design and measurements has been made such that area of				
	two bedrooms and kitchen together is 95 m ² .				
	т	x 2 m	<u> </u>		
	5 m	Bedroom 1	· Kitchen		
	2 m †				
	5 m	Bedroom 2	Living Room		
		15 m			
(i)	Which pair of linear equations does describe this situation?				
	(a) $x + y = 17, 3x + y = 15$				
	(b) $x + y = 27, 3x + 4y = 95$				
	(c) $5x + 2y = 15, x + 4y = 12$				
	(d) $2x + y = 1$	19, $x + y = 13$			
(ii)	What is the length of the outer boundary of the layout?				
	(a) 40 m	(b) 54 m	(c) 27 m	(d) 48 m	
(iii)	What is the area	of bedroom 1?			
	(a) 30 m ²	(b) 40 m ²	(c) 55 m ²	(d) 25 m ²	
(iv)	What is the area	of kitchen in the	layout?		
	(a) 60 m ²	(b) 50 m ²	(c) 35 m ²	(d) 40 m ²	
(v)	What is the cost	of laying tiles in	Kitchen at the rate	e of ₹ 50 per m²?	
	(a) ₹3000	(b) ₹2500	(c) ₹1750	(d) ₹2000	
Q 4	At some point, it	's time to gently	ease, kids off the	parental gravy	
	train. The circle of	graph shows the	percentage of par	ents who think	
	significant financ	iai support shoul	d end at various n	nilestones.	

	INDIA	TODAY SU	RVEY		
	When to end financial support to kids				
	None : A always g Getting Married Getting a full time job	Parents should give financial support 14% 30% 30% y Completi High Sch	ng ing ool		
	The difference in t completing college	the percentage wh e and after comple	o would end this set ing high school is	support after s 6%.	
(i)	What is the percer	ntage of parents v	vho would end fina	ancial support	
	after a child comp	letes college.			
	(a) 26%	(b) 34%	(c) 28%	(d) 22%	
(ii)	What is the percer after a child comp	ntage of parents v letes high school.	/ho would end fina	ancial support	
	(a) 22%	(b) 24%	(c) 18%	(d) 14%	
(iii)	What is the total of financial support a full time job?	combined percentant	age of parents who etes high school a	o would end and after getting a	
	(a) 42%	(b) 56%	(c) 52%	(d) 48%	
(iv)	What is the total of	combined percenta	age of parents who	o would end	
	financial support a married?	after a child compl	etes college and a	after getting	
	(a) 28%	(b) 36%	(c) 42%	(d) 34%	

(v)	The pair of linear equations in the problem here represent the lines		
	which have		
	(a) one solution	(b) two solutions	
	(c) infinitely many solutions	(d) no solutions	
Q 5	Architectural Wonders: When it was first	t constructed in 1889, the Eiffel	
	Tower in Paris, France, was the tallest st	tructure in the world. In 1975,	
	the CN Tower in Toronto, Canada, becar	me the world's tallest structure.	
	P A R I S TORCE		
	The CN Tower is 153 ft less than twice t	he height of the Eiffel Tower,	
	and the sum of their heights is 2799 ft.		
(i)	Let the height of Fiffel tower be x and th	height of CN tower he v	
	Which of the following is the correct syst	tem of equations that model	
	the problem?		
	(a) $x - y = 153, x + 2y = 2799$		
	(b) $2x - y = 153$, $x + y = 2799$		
	(c) $x - 2y = 2690, 2x + y = 153$		
	(d) $X + 3y = 153, X - y = 2690$		
(ii)	How tall is CN tower?		
	(a) 2050 ft (b) 1725 ft	(c) 1815 ft (d) 1125ft	
(iii)	How tall is Eiffel tower?		
	(a) 1125 ft (b) 984 ft ((c) 1215 ft (d) 824ft	
(iv)	What is the difference of the heights of (CN Tower and Eiffel Tower?	

	(a) 972 ft (b)	783 ft	(c) 831 ft	(d) 585ft	
(v)	The pair of linear equat	tions in the pr	oblem here repr	esent the lines	
	which are				
	(a) Parallel lines		(b) Interse	ecting lines	
	(c) Coincident lines	5	(d) None	of these	
	OBJECTIVE TY	PE QUESTIC	NS (OTHER TH	IAN MCQs)	
	State True and False in	Q No. 1 to 10).		
Q 1	$ax^2 + by + c = 0$ is a li	near equation	in two variable.		
Q 2	(4, 2) is the solution of	the equation	s x - 2y = 0 and	3x + 4y = 20.	
Q 3	A pair of linear equations which has no solution, is called an inconsistent pair of linear equations.				
Q 4	If two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel then,				
	$\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$				
Q 5	If a pair of linear equations is consistent, then the lines will be intersecting or coincident.				
Q 6	(3, -1) is not the solution of the equations $2x - 5y = 0$ and $3x + 2y = 20$.				
Q 7	x + 2y - 4 = 0 and $2x + 4y - 12 = 0$ are intersecting lines.				
Q 8	2x + 3y - 9 = 0 and $4x + 6y - 18 = 0$ are coincident lines.				
Q 9	The pair of equations $x = a$ and $y = b$ graphically represents lines which are intersecting at (a, b) .				
Q 10	Pair of linear equations: $9x + 3y + 12 = 0$, $8x + 6y + 24 = 0$ have infinitely many solutions.				
	SHORT ANSWER TYPE QUESTIONS				
Q 1	For what value of k, the system of equations $kx + 3y = 1$, $12x + ky = 2$ has no solution.				
Q 2	Two lines are given to be parallel. The equation of one of the lines is $4x + 3y = 14$, then find the equation of the second line.				
Q 3	In a number of two digits, unit's digit is twice the tens digit. If 36 be added to the number, the digits are reversed. The number is?				

Q 4	Aruna has only $\gtrless1$ and $\gtrless2$ coins with her. If the total number of coins that she has is 50 and the amount of money with her is $\gtrless75$, then the number of $\gtrless1$ and $\gtrless2$ coins are?		
Q 5	For what value of k, do the equations $3x - y + 8 = 0$ and $6x - ky = -16$ represent coincident lines?		
Q 6	Find the value of k for which the system of linear equations $x + 2y = 3$, $5x + ky + 7 = 0$ is inconsistent.		
Q 7	Solve $x + y = 5$ and $2x - 3y = 4$ by elimination method to find the value of x and y.		
Q 8	Solve $3x - 5y - 4 = 0$ and $9x = 2y + 7$ by substitution method to find the value of x and y.		
Q 9	Solve for x and y :		
	3x + 4y = 10		
	2x - 2y = 2		
Q 10	For what value of k , will the following pair of equations have infinitely many solutions:		
	2x + 3y = 7 and $(k + 1)x + (2k - 1)y = 4k + 1$.		
	LONG ANSWER TYPE QUESTIONS		
Q 1	A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹3,000 as hostel charges whereas Mansi who takes food for 25 days ₹3,500 as hostel charges. Find the fixed charges and the cost of food per day.		
Q 1 Q 2	A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹3,000 as hostel charges whereas Mansi who takes food for 25 days ₹3,500 as hostel charges. Find the fixed charges and the cost of food per day. For flood victim's two sections A and B of class X contributed Rs. 1,500. If the contribution of X-A was Rs. 100 less than that of X-B, find graphically the amounts contributed by both the sections.		
Q 1 Q 2 Q 3	 A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹3,000 as hostel charges whereas Mansi who takes food for 25 days ₹3,500 as hostel charges. Find the fixed charges and the cost of food per day. For flood victim's two sections A and B of class X contributed Rs. 1,500. If the contribution of X-A was Rs. 100 less than that of X-B, find graphically the amounts contributed by both the sections. Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3, determine the number. 		
Q 1 Q 2 Q 3 Q 4	 A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹3,000 as hostel charges whereas Mansi who takes food for 25 days ₹3,500 as hostel charges. Find the fixed charges and the cost of food per day. For flood victim's two sections A and B of class X contributed Rs. 1,500. If the contribution of X-A was Rs. 100 less than that of X-B, find graphically the amounts contributed by both the sections. Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3, determine the number. 4 chairs and 3 tables cost Rs 2100 and 5 chairs and 2 tables cost Rs 1750. Find the cost of one chair and one table separately. 		
Q 1 Q 2 Q 3 Q 4 Q 5	 A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹3,000 as hostel charges whereas Mansi who takes food for 25 days ₹3,500 as hostel charges. Find the fixed charges and the cost of food per day. For flood victim's two sections A and B of class X contributed Rs. 1,500. If the contribution of X-A was Rs. 100 less than that of X-B, find graphically the amounts contributed by both the sections. Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3, determine the number. 4 chairs and 3 tables cost Rs 2100 and 5 chairs and 2 tables cost Rs 1750. Find the cost of one chair and one table separately. If a bag containing red and white balls, half the number of white balls is equal to one-third the number of red balls. Thrice the total number of balls exceeds seven times the number of white balls by 6. How many balls of each color does the bag contain? 		

CHAPTER:03

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

SOLUTION OF THE PROBLEMS

	SOLUTIONS TO COMPETENCY BASED QUESTIONS				
Ans 1	(d) 2, Here $\frac{a_1}{a_2} = \frac{1}{2}$, $\frac{b_1}{b_2} = \frac{1}{k}$ and $\frac{c_1}{c_2} = \frac{-4}{-3} = \frac{4}{3}$,				
	Since system has no solution, we have				
	$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$				
	$\frac{1}{2} = \frac{1}{k} \neq \frac{4}{3}$				
	k = 2				
Ans 2	(c) intersecting or coincident				
Ans 3	(d) no solutions, The pair of both equations are parallel to x-axis and				
	we know that parallel lines never intersects. So,				
	there is no solution of these lines.				
Ans 4	(b) 11, The numbers that can be formed are $(10x + y)$ and $(10y + x)$.				
	Hence, $(10x + y) + (10y + x) = 11(x + y)$. If this is a perfect				
	square than $x + y = 11$.				
Ans 5	(a) k $\neq -3$, Here $\frac{a_1}{a_2} = \frac{2k}{6}$, $\frac{b_1}{b_2} = \frac{5}{-5}$				
	Since system has unique solution, we have				
	$\frac{a1}{a2} \neq \frac{b1}{b2}$				
	$\frac{2k}{6} \neq \frac{5}{-5}$				
	$\frac{k}{3} \neq -1$				
	k ≠ - 3				
Ans 6	(d) $10x - 14y = -4$				
Ans 7	(c) 3 and 1				
Ans 8	(d) intersecting at (a, b)				

Ans 9	(c) 2, Here $\frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2}$, $\frac{b_1}{b_2} = \frac{-1}{-k} = \frac{1}{k}$ and $\frac{c_1}{c_2} = \frac{8}{16} = \frac{1}{2}$,						
	Since system has no solution, we have						
	$\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$						
	$\frac{1}{2} = \frac{1}{k} = \frac{1}{2}$						
	k = 2						
Ans10	(a) Parallel lines						
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS						
	(i) (a) 70,						
	Let x be the mask of type A sold and y be the type of mask B sold in april.						
	Now, $x + y = 100$ (1)						
	And $15x + 20y = 1650$ (2)						
	Multiplying equation (1) by 15 and subtracting from (2) we obtain,						
	5y = 150						
Ans I	y = 30						
	x = 100 - 30 = 70						
	Hence 70 masks of type A were sold.						
	(ii) (c) 30 As, y = 30						
	(iii) (b) 1750, Total Sales = 50 x 15 + 50 x 20 = 1750						
	(iv) (d) 2150, Total Sales = 70 x 20 + 30 x 25 = 2150						
	(v) (b) Intersecting lines, Because they have exactly one solution.						
	(i) (a) $x + y = 480$, $3x + 8y = 2690$						
	Since 480 people visited, we obtain						
Ans 2	x + y = 480(1)						
	Collected amount is Rs 134500 thus $150x + 400y = 134500$						
	3x + 8y = 2690(2)						
	(ii) (c) 230						

	Solving the equations (1) and (2) we get $x = 230$ and $y = 250$				
	So, number of children attended = 230				
	(iii) (b) 250				
	Number of adults attended = 250				
	(iv) (c) 185000				
	Amount = 150 x 300 + 400 x 350 = 185000				
	(v) (a) consistent				
	Because they have one solution.				
	(i) (d) $2x + y = 19$, $x + y = 13$				
	Area of two bedrooms = $5x + 5x = 10x m^2$				
	Area of kitchen = $5y m^2$				
	Thus $10x + 5y = 95$				
	2x + y = 19(1)				
	Also from the figure, we have,				
	x + 2 + y = 15				
Ans 3	x + y = 13(2)				
	(ii) (b) 54 m, Length of outer boundary = $2(5 + 2 + 5 + 15) = 54$ m				
	(iii) (a) 30 m ²				
	Solving $2x + y = 19$ and $x + y = 13$ we get				
	x = 6 m and y = 7 m				
	Area of bedroom = $5 \times 6 = 30 \text{ m}^2$				
	(iv) (c) 35 m ²				
	Area of Kitchen = $5 \times 7 = 35 \text{ m}^2$				
	(v) (c) ₹1750				
	Total cost of laying tiles in Kitchen = $50 \times 35 = 1750 \text{ m}^2$				
Ans 4	(i) (c) 28%				
	According to the question, we have				

	x + y + 30 + 6 + 14 = 100					
	x + y = 50(1)					
	The difference in the percentage who would end this support a completing college and after completing high school is 6%. Thus					
	x - y = 6(2)					
	Solving equation (1) and (2) we get					
	x = 28 and $y = 22$					
	So, the percentage of parents who would end financial support after child completes college is 28.					
	(ii) (a) 22%					
	The percentage of parents who would end financial support after a child completes high school is 22%.					
	(iii) (c) 52%					
	The total combined percentage of parents who would end financial support after a child completes high school and after getting a full time job is $30\% + 22\% = 52\%$.					
	(iv) (d) 34% The total combined percentage of parents who would end financial support after a child completes college and after getting married is $28\% + 6\% = 34\%$					
	(v) (a) one solution					
	(i) (a) 2x - y = 153, x + y = 2799					
	Height of Eiffel tower be x and CN tower be y .					
	The CN tower is 153 ft less than twice the height of the Eiffel Tower, thus					
Ans 5	2x - y = 153(1)					
	The sum of their heights is 2799 ft, thus					
	x + y = 2799(2)					
	(ii) (c) 1815 ft					

	Solving equation (1) and (2), we get					
	x = 984 and $y = 1815$					
	So, the height of CN Tower is 1815 ft.					
	(iii) (b) 984 ft					
	The height of Eiffel Tower is 984 ft.					
	(iv) (c) 831 ft					
	Difference = 1815 - 984 = 831 ft					
	(v) (b) Intersecting lines					
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)					
Ans 1	False					
Ans 2	True					
Ans 3	True					
Ans 4	False					
Ans 5	True					
Ans 6	True					
Ans 7	False					
Ans 8	True					
Ans 9	True					
Ans10	False					
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS					
Ans 1	Here $\frac{a_1}{a_2} = \frac{k}{12}$, $\frac{b_1}{b_2} = \frac{3}{k}$ and $\frac{c_1}{c_2} = \frac{-1}{-2} = \frac{1}{2}$,					
	Since system has no solution, we have					
	$\frac{a1}{c2} = \frac{b1}{b2} \neq \frac{c1}{c2}$					
	az bz cz k 3 1					
	$\frac{\pi}{12} = \frac{3}{k} \neq \frac{1}{2}$					
	From $\frac{k}{12} = \frac{3}{k}$ we have					
	$k^2 = 36$					

	$k = \pm 6$
	From $\frac{3}{k} \neq \frac{1}{2}$ we have $k \neq 6$
	Thus k = - 6
Ans 2	The equation of one line is $4x + 3y = 14$. We know that if two lines
	$a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel then,
	$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$
	$\frac{4}{a2} = \frac{3}{b2} \neq \frac{c1}{c2}$
	$\frac{a2}{b2} = \frac{4}{3} = \frac{12}{9}$
	Hence, one of the possible, second parallel line is $12x + 9y = 5$.
Ans 3	48
Ans 4	25 and 25
Ans 5	k = 2
Ans 6	k = 10
Ans 7	$x = \frac{19}{5}, y = \frac{6}{5}$
Ans 8	$x = \frac{9}{13}, \ y = \frac{-5}{13}$
Ans 9	x = 2 and $y = 1$
Ans10	k = 5
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans 1	Let fixed charge be ₹x and per day food cost be ₹y
	x + 20y = 3000(1)
	x + 25y = 3500(2)
	Subtracting (1) from (2) we have
	5y = 500
	y = 100
	Substituting this value of y in (1) , we have
	x + 20(100) = 3000

	Hence the number is 36.				
Ans 4	Let cost of 1 chair be ₹x and cost of 1 table be ₹y				
	According to the question,				
	4x + 3y = 2100(1)				
	5x + 2y = 1750(2)				
	Solving (1) from (2) we have				
	x = 150				
	and $y = 500$				
	The cost of chair and table is ₹150 and ₹500 respectively.				
Ans 5	Let the number of red balls be x and white balls be y				
	According to the question,				
	$\frac{y}{2} = \frac{1}{3} \times$				
	2x - 3y = 0(1)				
	And $3(x + y) - 7y = 6$				
	3x - 4y = 6(2)				
	Solving (1) from (2) we have				
	y = 12				
	and $x = 18$				
	Hence, number of red balls = 18 and number of white balls = 12 .				
Ans 6	Let x be the age of father and y be the sum of the ages of his children.				
	After 5 years,				
	Father's age = $(x + 5)$ years				
	Sum of the ages of his children = $(y + 10)$ years				
	According to the question,				
	x = 3y =(1)				
	and $x + 5 = 2(y + 10)$				
	x - 2y = 15(2)				
	Solving (1) from (2) we have				
	y = 15				

	and $x = 45$				
	Hence, father's present age is 45.				
Ans 7	Let the speed of car I from A be x and speed of car II from B be y.				
	Same Direction:				
	Distance covered by car I = $150 + Distance$ covered by car II				
	15x = 150 + 15y				
	x - y = 10(1)				
	Opposite Direction:				
	Distance covered by car I + Distance covered by car II =150				
	x + y = 150(2)				
	Solving (1) from (2) we have				
	x = 80				
	and $y = 70$				
	Speed of car I from A = 80 km/h and speed of car II from B = 70 km/h.				
Ans 8	Let cost of 1 kg apple be ₹x and cost of 1 kg of grapes be ₹y				
	2x + y = 160(1)				
	4x + 2y = 300(2)				
	From (1), $y = 160 - 2x$				
	x 50 45				
	y 60 70				
	From (2), $y = 150 - 2x$				
	x 50 40				
	y 50 70				
	Plotting the above points and drawing lines joining them, we get two parallel lines as following graph shows.				

CHAPTER:04

QUADRATIC EQUATIONS

	COMPETENCY BASED QUESTIONS				
Q1	Which one of the following is not a quadratic equation?				
	(a) $(x+2)^2$	= 2(x + 3)	(b) $x^2 + 3x$	$x = (-1)(1 - 3x)^2$	
	(c) $(x+2)(x$	$(x-1) = x^2 - 2x - x^2 - x^2$	-3 (d) $x^3 - x$	$x^2 + 2x + 1 = (x + 1)^3$	
Q2	Which of the following equations has – 1 as a root?				
	(a) x ² + 3x -	10 = 0	(b) x ² - x - 12	2 = 0	
	(c) 3x ² - 2x	- 5 = 0	(d) 9x ² + 24x	+ 16 = 0	
Q3	If the different	nce of roots of the value of k is	e quadratic equati	on x ² +kx+12=0 is 1,	
	(a) – 7	(b) 7	(c) 4	(d) 8	
Q4	Which of the	following are the	roots of $3x^2 + 2x$ -	-1=0	
	(a) x=-1	(b) x=1/3	(c) x=-1/2	(d) x=2	
Q 5	If one root of quadratic equation $4x^2 - 2x + k - 4 = 0$ is reciprocal of				
	the other, the	en the value of k i	İS		
	(a) -4	(b) 2	(c) 4	(d) 8	
Q 6	The two consecutive odd positive integers, sum of whose squares is 290 are				
	(a) 13, 15	(b) 11, 13	(c) 7, 9	(d) 5, 7	
Q 7	Find the value of k for which $m=1/\sqrt{3}$ is a root of the equation $km^2+(\sqrt{3}-\sqrt{2})m-1=0$.				
	(a) √2	(b) 2	(c) √6	(d) 5	
Q 8	If the equation	on x ² -kx+9=0 doe	es not possess rea	al roots, then	

	(a) – 6< k <6 (b) k	>6	(c) k<-6	(d) k=±6
Q 9	If $p^2x^2 - q^2 = 0$, then	x=		
	(a) ±q/p (b) ±	p/q	(c) p	(d) q
Q10	The quadratic equation whose one rational root is $3+\sqrt{2}$ is			
	(a) x ² - 7x + 5	(b)) x ² + 7x + 6 =	: 0
	(c) x ² - 7x + 6	(d)	$x^{2} - 6x + 7 =$	0
	CASE STUDIES/ S	SOURCE BA	SED INTEGRA	TED QUESTIONS
Q 1	Kartik went to his horr distance of 150 km via distance while visiting time taken in return jo of 10 km/hr more than Wow answer the follow	etown to vis his car. The his grandmo ourney. He re the speed the speed	sit his grandmo e time taken by other was 2.5 h ealised that he of going.	ther by covering a him to cover this nours more than the returned at a speed information:
(i)	Express the above con- Kartik's speed while go (a) $\frac{150}{x} - \frac{150}{x+10} = \frac{5}{2}$ (c) $\frac{150}{x} + \frac{150}{x+10} = \frac{5}{2}$	dition in for bing was x k (b) $\frac{15}{x}$ (d) $\frac{150}{x}$	m of a quadrat m/hr. $\frac{0}{x} + \frac{150}{x-10} = \frac{5}{2}$ $\frac{0}{x} - \frac{150}{x-10} = \frac{5}{2}$	ic equation, given that
(ii)	What was his speed w	hile going?		
	(a) 10 km/hr (b)	20 km/hr	(c) 30 km/hr	(d) 40 km/hr
(iii)	What was his speed w	hile returnin	g?	

	(a) 30 km/hr	(b) 40 km/hr	(c) 50 km/hr	(d) 20 km/hr
(iv)	What was the time taken by him to reach the destination (to visit his			
	grandmother)?			
	(a) 6 hours	(b) 6.5 hours	(c) 7 hours	(d) 7.5 hours
(v)	What was the ti	me taken by him t	o return to his or	iginal position?
	(a) 5 hours	(b) 5.5 hours	(c) 6 hours	(d) 7 hours
		inad a minute fam bi	a atu danta Mara	, shudanta anvallad
Q 2	A teacher organ	ized a picnic for hi	is students. Many	y students enrolled
	the students. Or	n the day of the pi	cnic, out of the to	otal enrolled, 8
	failed to go for t	he picnic and thus	s the cost of food	for each student
	who went increa	sed by Rs 10.		
			22	
	Now answer the	following question	n, based on this i	nformation:
(i)	Form a quadrati number of stude	c equation for the ents who enrolled	above case, give for the picnic be .	en that the total x.
	(a) $(x+8) \left(\frac{480}{x}\right)$	$(2^{2}+10) = 480$	(b) $(x-8)$	$\left(\frac{480}{x}\right) = 480$
	(c) $(x + 10) \left(\frac{4}{3}\right)$	$\left(\frac{80}{x} - 8\right) = 480$	(d) $\frac{480}{x-8}$ –	$\frac{480}{x} = 10$
(ii)	What was the to	tal number of stu	dents who enrolle	ed for the picnic?

	(a) 26	(b) 24	(c) 28	(d) 22
(iii)	What was the total number of students who actually went for the			
	picnic?			
	(a) 16	(b) 18	(c) 20	(d) 14
(iv)	What was the	e old cost of fo	od per student	had there been no increase
	in per head cost and everyone would have attended the picnic?			
	(a) Rs 32	(b) Rs 28	(c) Rs 20	(d) Rs 22
(v)	What was the	e new cost of f	ood per studen	it?
	(a) Rs 30	(b) Rs 28	(c) Rs 26	(d) Rs 28
Q 3	Water Distrib	ution System:	Delhi Jal Boar	d (DJB) is the main body of
	the Delhi Gov	vernment whic	h supplies drin	king water in the National
	Capital Territ	ory of Delhi. D	istribution syst	tem is well knit and properly
	planned. Maii	ntenance of un	iderground pip	e and hose system is also
	performed at	regular interv	al of time. Mar	iy rivers and canals are inter-
	monting the	order to ensur	le water for m	ed water supply. It has been
		ability of 50 g	allons per capit	a per day of pure and filtered
	water with th	e heln of effici	ent network of	water treatment plants and
	pumping stat	ions. In a part	icular locality,	DJB constructed two big
	reservoir labe	elled as Reserv	oir-A and Res	ervoir-B.
	Reservoir-A.	In order to fill	it denartmen	t uses two nines of different
	diameter.		it, departmen	
	Reservoir-B:	Department u	ses two taps to	o store water in this
	reservoir.			

	Refer to Reservoir-A		
(i)	Two pipes running together can fill the reservoir in $11\frac{1}{9}$ minutes. If one		
	pipe takes 5 minutes more than the other to fill the reservoir, the time		
	in which each pipe alone would fill the reservoir is		
	(a) 10 min, 12 min (b) 25 min, 20 min		
	(c) 15 min, 18 min (d) 22 min, 28 min		
(ii)	In case two pipes running together can fill a reservoir in 6 minutes. If		
	one pipe takes 5 minutes more than the other to fill the reservoir, the		
	time in which each pipe would fill the reservoir separately is		
	(a) 8 min, 6 min (b) 10 min, 15 min		
	(c) 12 min, 16 min (d) 16 min, 18 min		
	Refer to Reservoir-B		
(iii)	Two water taps together can fill a reservoir in $9\frac{3}{8}$ hours. The tap of		
	larger diameter takes 10 hours less than the smaller one to fill the		
	reservoir separately. The time in which each tap can separately fill the reservoir will be		
	(a) 15 hrs, 25 hrs (b) 20 hrs, 22 hrs		
	(c) 14 hrs, 18 hrs (d) 18 hrs, 16 hrs		
(iv)	Two taps running together can fill the reservoir in $3\frac{1}{13}$ minutes. If one		
	tap takes 3 minutes more than the other to fill it, how many minutes		
	each tap would take to fill the reservoir?		
	(a) 12 min, 15 min (b) 6 min, 9 min		
	(c) 18 min, 14 min (d) 5 min, 8 min		

(v)	If two tapes function simultaneously, reservoir will be filled in 12			
	hours. One tap fills the reservoir 10 hours faster than the other. The			
	time that the second tap takes to fill the reservoir is given by			
	(a) 25 hrs (b) 28 hrs			
	(c) 30 hrs (d) 32 hrs			
Q 4	A Hill Station: In the last summer, I enjoyed a tour to a hill station at Shimla. I was accompanied by my five friends and enjoyed the natural			
	beauties of mountains, rivers, streams, forests etc. The beginning of			
	the tour was the most adventurous itself! How amazingly my group			
	win the bet! Actually, the story is that my two friends along with me			
	preferred train to go to Shimla, but other three were forcing for a car			
	or a bus. At last the consensus was reached and we were divided			
	ourselves in two groups of 3 each and started for Shimla at the same			
	time. It was decided that the group who reach the destination first,			
	would be declared as the winner, and runner up the group have to			
	second group was named as 'Group B' Luckily we reached Shimla 1			
	bour before the Group-B and enjoyed the trip for absolutely EPEEU			
	How thrilling it was the tour!			
	RACIO KALKA-SHIMLA			
	Refer to Group-A			

(i)	An express train takes 1 hour less than a passenger train to travel 132				
	km between Delhi and Shimla (without taking into consideration the				
	time they stop at intermediate stations). If the average speed of the				
	express train is 11 km/hr more than that of the passenger train, the				
	average speeds of the two trains will be				
	(a) 33 km/h, 44 km/hr (b) 40 km/h, 45 km/h				
	(c) 30 km/h, 38 km/h (d) 42 km/h, 62 km/h				
(ii)	An express train makes a run of 240 km at a certain speed. Another				
	train whose speed is 12 km/hr less takes an hour longer to make the				
	same trip. The speed of the express train will be				
	(a) 60 km/n (b) 50 km/n (c) 65 km/n (d) 48 km/n				
(iii)	A journey of 192 km from Delhi to Shimla takes 2 hours less by a				
	super fast train than that by an ordinary passenger train. If the				
	average speed of the slower train is 16 km/hr less than that of the				
	faster train, average speed of super fast train is				
	(a) $E(1) km/h$ (b) $4(2) km/h$ (c) $E(1) km/h$ (d) $E(1) km/h$				
	(d) 50 kill/li (D) 40 kill/li (C) 55 kill/li (U) 60 kill/li				
	Refer to Group-B				
(iv)	A deluxe bus takes 3 hours less than a ordinary bus for a journey of				
	600 km. If the speed of the ordinary bus is 10 km/hr less than that of				
	the deluxe bus, the speeds of the two buses will be				
	(a) 35 km/h, 42 km/h (b) 42 km/h, 52 km/h				
	(c) 40 km/h, 50 km/h (d) 30 km/h, 58 km/h				
(v)	A bus travels a distance of 300 km at a uniform speed. If the speed of				
	the bus is increased by 5 km an hour, the journey would have taken				
	two hours less. The original speed of the bus will be				
	(a) 20 km/h (b) 15 km/h (c) 22 km/h (d) 25 km/h				
	(u) = (u)				

Q 5	Seven years ago, Surya's age was five times the square of Tara's age.			
	Three years hence, Tara's age will be two-fifth of Surya's age.			
(i)	If seven years ago, Tara's age be x years, then Surya's age is			
	(a) $(5x-7)^2$ years (b) $5x^2$ years (c) $5x^2+7$ years (d) $5x^2-7$ years			
(ii)	After three years, Tara's age will be			
	(a) $x+3$ years (b) $x-3$ years (c) $x+7$ years (d) $x+10$ years			
(iii)	The quadratic equation related to the given problem is			
	(a) $2x^2-x-6=0$ (b) $5x^2-x+6=0$ (c) $3x^2-2x+5=0$ (d) $7x^2-3x+1=0$			
(iv)	(iv) Present age of Surya is			
	(a) 27 years (b) 20 years (c) 30 years (d) 37 years			
(v)	(v) When Tara's will be 10 years old, at that time Surya's age will be			
	(a) 40 years (b) 47 years (c) 45 years (d) 52 years			
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)			
Q 1	True or False: The quadratic equation $(x - 1)^2 + 2(x + 1) = 0$ has			
	no real roots.			
Q 2	True or False: 0.3 is a root of $x^2 - 0.9 = 0$.			
Q 3	Every quadratic equation has atleast one real root. (True/False)			
Q 4	The graph of a quadratic polynomial is a straight line. (True/False)			
Q 5	is a root of quadratic equation $x^2 - 0.04 = 0$.			
Q 6	The equation of the form $ax^2 + bx = 0$ will always have			
------	--			
	roots.			
Q 7	If one root of quadratic equation $6x^2 - x - k = 0$ is 2/3, value of k is			
Q 8	Roots of Quadratic equation $x^2 - 7x = 0$ are and			
Q 9	If the coefficient of x^2 and constant term of a quadratic equation have			
	signs then the quadratic equation has real roots.			
Q 10	If the equation $x^2 + x - 5 = 0$ then product of its two roots is			
	·			
	SHORT ANSWER TYPE OUESTIONS			
Q 1	If $ax^2 + bx + c = 0$ has equal roots, find the value of c.			
Q 2	If <i>a</i> and <i>b</i> are the roots of the equation $x^2 + ax - b = 0$, then find <i>a</i>			
	and <i>b</i>			
Q 3	Write the set of values of k for which the quadratic equation			
	$2x^2 + kx + 8 = 0$ has real roots.			
Q 4	If one of the roots of $x^2 + px - 4 = 0$ is – 4, then find the product of			
	its roots and the value of p .			
	,			
Q 5	In each of the following equations, find the value of unknown constant			
	for which the given value is a solution of the equation:			
	(i) $x^2 - k^2 = 0$; $x = 0.3$			
	(ii) $3x^2+2ax-3=0$; $x = -1/2$			
Q 6	Find discriminant of the quadratic equation $3x^2 + 4x - 5 = 0$. What			
_	type of roots does the given quadratic equation have?			

Q 7	The area of a rectangular plot is 428 sq m. The length of the plot (in
	metres) is two more than twice its breadth. Find the length and
	breadth of the plot.
0.8	Does there exist a quadratic equation whose coefficients are rational
QU	but both of its roots are irrational? Justify your answer
	but both of its roots are infational: Justify your answer.
Q 9	The sides of two square plots are $(2x - 1)m$ and $(5x+4)m$. The area of
	the second square plot is 9 times the area of the first square plot. Find
	the side of the larger plot.
Q 10	If ad≠bc, then prove that the equation
	$(a^{2}+b^{2})x^{2} + 2(ac+bd)x + (c^{2}+d^{2}) = 0$ has no real roots.
	LONG ANSWER TYPE OUESTIONS
Q 1	If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the
	quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the
	value of k.
0.2	Solve the following quadratic equation:
Q Z	
	$2x^2 + 4x - 8 = 0$
03	
ζ J	Find the roots of the quadratic equation $2x^2 + \frac{1}{3}x - 2 = 0$ by
	factorisation method.
Q 4	In a class test, the sum of Manya's marks in English and Science is 30.
	Had she got 2 marks more in English and 3 marks less in Science, the
	product of her marks would have been 210. Find her marks in the two
	subjects.
Q 5	If the roots of the quadratic equation
	(x - a) (x - b) + (x - b) (x - c) + (x - c) (x - a) = 0
	are equal, then show that $a = b = c$.
Q 6	The sum of the reciprocals of Rehman's age (in years) 3 years ago and
	5 years from now is Find his present age.
1	

Q 7	In a rectangular park of dimensions 50 m \times 40 m, a rectangular pond
	is constructed so that the area of grass strip of uniform width
	surrounding the pond would be 1184 m^2 . Find the length and breadth
	of the pond.
Q 8	Zahlen and Zeba together have 25 balloons to blow air in. Both of
	them lost 5 balloons each due to bursting and the product of the
	number of balloons they now have, is 54. Find out how many balloons
	they had to start with?
Q 9	In a class test, the sum of Gagan's marks in Mathematics and English
	is 45. If he had 1 more mark in Mathematics and 1 less in English, the
	product of marks would have been 500. Find the original marks
	obtained by Gagan in Mathematics and English separately.
Q 10	A motor boat whose speed in still water is 16 km/h, takes 2 hours
	more to go 60 km upstream than to return to the same spot. Find the
	speed of the stream.

CHAPTER-04

QUADRATIC EQUATIONS

SOLUTION OF THE PROBLEMS

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(c)
Ans 2	(c)
Ans 3	(b)
Ans 4	(b)
Ans 5	(d)
Ans 6	(b)
Ans 7	(c)
Ans 8	(a)
Ans 9	(a)
Ans 10	(d)
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
Ans 1	
(i)	(a) $\frac{150}{x} - \frac{150}{x+10} = \frac{5}{2}$
(ii)	(b) 20 km/hr
(iii)	(a) 30 km/hr
(iv)	(d) 7.5 hours
(v)	(a) 5 hours

Ans 2	
(i)	(d) $\frac{480}{x-8} - \frac{480}{x} = 10$
(ii)	(b) 24
(iii)	(a) 16
(iv)	(c) Rs.20
(v)	(a) Rs 30
Ans 3	
(i)	(b) 25 min, 20 min
(ii)	(b) 10 min, 15 min
(iii)	(a) 15 hours, 25 hours
(iv)	(d) 5 min, 8 min
(v)	(c) 30 hours
Ans 4	
(i)	(a) 33 km/h, 44 km/hr
(ii)	(a) 60 km/h
(iii)	(b) 48 km/h
(iv)	(c) 40 km/h, 50 km/h
(v)	(d) 25 km/h
Ans 5	
(i)	(b) 5x ² years
(ii)	(d) x+10 years
(iii)	(a) 2x ² -x-6=0

(iv)	(a) 27 years
(v)	(d) 52 years
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN
	MCQs)
Ans 1	True.
	Reason: $(x - 1)^2 + 2(x + 1) = 0$
	$\Rightarrow \qquad x^2 + 3 = 0$
	$\Rightarrow x^2 + 0.x + 3 = 0$
	So, D=-12 < 0
	Therefore, the roots are not real.
Ans 2	False
Ans 3	False
Ans 4	False
Ans 5	±0.2
Ans 6	Real
Ans 7	2
Ans 8	0,7
Ans 9	Opposite
Ans 10	-5
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans 1	Given : quadratic equation $ax^2 + bx + c = 0$ has equal roots.
	For equal roots, $D = 0$
	i.e., $b^2 - 4ac = 0$

	\Rightarrow b ² = 4ac
	\Rightarrow c = b ² /4a
Ans 2	Sum of the root, $a+b = -a$
	Product of the roots, $ab = -b$
	ab = -b
	\Rightarrow $a=-1$
	& a+b=-a
	b=-2a
	$\Rightarrow b = -2(-1) = 2$
Ans 3	For quadratic equation $2x^2 + kx + 8 = 0$ to have real roots
	$D \ge 0$
	$\Rightarrow \qquad b^2 - 4ac \ge 0$
	$\Rightarrow k^2 - 4(2)(8) \ge 0$
	$\Rightarrow \qquad k^2 - 64 \ge 0$
	\Rightarrow $k^2 \ge 64$
	$\Rightarrow k \leq 8 and k \geq 8$
Ans 4	If – 4 is a root of the quadratic equation $x^2 + px - 4 = 0$
	$\therefore \ (-4)^2 + \ p(-4) - 4 = 0$
	\Rightarrow 16 - 4p - 4=0
	$\Rightarrow 12 - 4p = 0$

	\Rightarrow p = 3
	Now, Product of the roots = c/a
	• Product of the roots in $r^2 + nr - 4 = 0$ is $-4/1 = -4$
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Ans 5	(i) $x^2-k^2=0$; $x=0.3$
	Since, $x=0.3$ is a solution of given equation, so it will satisfy the
	given equation.
	On putting $x=0.3$ in the given equation, we get
	$(0.3)^2 - k^2 = 0$
	$\Rightarrow \qquad k^2 = (0.3)^2$
	\Rightarrow k = ± 0.3
	(ii) $3x^2+2ax-3=0$; $x = -1/2$
	Since, $x=-1/2$ is a solution of given equation, so it will satisfy the
	given equation.
	On putting $x=-1/2$ in the given equation, we get
	$3(-1/2)^2 + 2a(-1/2) - 3 = 0$
	\Rightarrow 3/4 - a = 3
	$\Rightarrow \qquad a = 3/4 - 3$
	\Rightarrow a = - 9/4
Ans 6	Comparing the given quadratic equation $3x^2 + 4x - 5 = 0$
	with standard quadratic equation $ax^2+bx+c=0$, we get
	a = 3, $b = 4$ and $c = -5$

	\therefore Discriminant, D = b ² - 4ac
	$= 4^2 - 4(3)(-5)$
	= 16 + 60
	= 76
	Since D>0, the roots are real and distinct.
Ans 7	Let the breadth of the plot be x metres.
	Then the length of the plot = $2x + 2$ metres
	Since, area of the plot = 428 m^2 (Given)
	\therefore x(2x + 2) = 428
	$\Rightarrow 2x^2 + 2x - 428 = 0$
	$\Rightarrow \qquad x^2 + x - 214 = 0$
Ans 8	Yes.
	e.g. $x^2 - 4x + 1 = 0$ is a quadratic equation with rational coefficients.
	Its roots are $\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(1)}}{2} = \frac{4\pm\sqrt{(-4)^2-4(1)(1)}}{2} = \frac{4\pm\sqrt{12}}{2} = 2\pm$
	$\sqrt{3}$,
	which are irrational.
Ans 9	$(5x+4)^2 = 9(2x-1)^2$
	$\Rightarrow \qquad 5x+4 = \pm 3(2x-1)$
	\Rightarrow 5x+4+6x-3=0 Or 5x+4+6x+3=0
	$\Rightarrow 11x = -1 \text{Or} 5x + 4 - 6x + 3 = 0$

	$\Rightarrow \qquad x=-1/11 \text{Or} -x+7=0 \Rightarrow x=7$
	Discard $x=-1/11$.
	So, Side of larger plot is $(5x+4)m = 5(7)+4=39m$.
Ans 10	Given: quadratic equation $(a^2+b^2)x^2 + 2(ac+bd)x + (c^2+d^2) = 0$
	$D = b^2 - 4ac$
	$= 4 (ac+bd)^2 - 4 (a^2+b^2)(c^2+d^2)$
	$= -4 (a^2d^2 + b^2c^2 - 2abcd)$
	$= -4 (ad - bc)^2$
	Since ad ≠ bc
	Therefore D < 0
	Hence, the equation has no real roots.
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans 1	-5 is a root of the quadratic eq. $2x^2 + px - 15 = 0$
	$\Rightarrow 2(-5)^2 + p(-5) - 15 = 0$
	$\Rightarrow 2(25) - 5p - 15 = 0$
	$\Rightarrow 50-5p-15=0$
	$\Rightarrow 35 - 5p = 0$
	$\Rightarrow 5p = 35$
	$\Rightarrow p = 7$
	The quadratic equation $px^2 + px + k = 0$ has equal roots.
	\Rightarrow D=0
	$\Rightarrow p^2 - 4(p)(k) = 0$
	$\Rightarrow 7^2 - 4(7)(k) = 0$

	$\Rightarrow 49 - 28k = 0$
	$\Rightarrow 28k = 49$
	$\Rightarrow k = 49/28 = 7/4$
Ans 2	We have: $2x^2 + 4x - 8 = 0$
	Dividing by 2, we get
	$x^2 + 2x - 4 = 0$ (i)
	Comparing (i) with $ax^2 + bx + c = 0$, $a = 1$, $b = 2$, $c = -4$
	$\therefore b2 - 4ac = (2)^2 - 4(1)(-4)$
	= 4 + 16
	= 20
	Since, x = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\therefore x = \frac{-2\pm\sqrt{20}}{2}$
	$\Rightarrow x = \frac{-2\pm 2\sqrt{5}}{2}$
	$\Rightarrow x = -1 \pm \sqrt{5}$
	Taking +ve sign, we get $x = -1 + \sqrt{5}$
	Taking –ve sign, we get $x = -1 - \sqrt{5}$
	Thus, the required roots $x = -1 + \sqrt{5}$ and $x = -1 - \sqrt{5}$.
Ans 3	Given equation is $2x^2 + \frac{5}{3}x - 2 = 0$
	On multiplying by 3 both sides, we get
	$6x^2 + 5x - 6 = 0$

	$\Rightarrow \qquad 6x^2 + (9x - 4x) - 6 = 0 \qquad [by splitting the middle term]$
	$\Rightarrow \qquad 6x^2 + 9x - 4x - 6 = 0$
	$\Rightarrow 3x(2x+3) - 2(2x+3) = 0$
	$\Rightarrow \qquad (2x+3)(3x-2) = 0$
	Now, $(2x + 3) = 0$
	\Rightarrow $x = -3/2$
	and $(3x - 2) = 0$
	$\Rightarrow \qquad x = 2/3$
	Hence, the roots of the equation $2x^2 + \frac{5}{3}x - 2 = 0$ are -3/2 and 2/3.
Ans 4	Let Manya's marks in English be x.
	Therefore, Manya's marks in Science is (30 – x).
	Now, according to question,
	\Rightarrow (x + 2) (30 - x - 3) = 210
	\Rightarrow (x + 2) (27 - x) = 210
	$\Rightarrow 27x - x^2 + 54 - 2x = 210$
	$\Rightarrow 25x - x^2 + 54 - 210 = 0$
	$\Rightarrow 25x - x^2 - 156 = 0$
	$\Rightarrow - (x^2 - 25x + 156) = 0$
	$\Rightarrow x^2 - 25x + 156 = 0$
	$= x^2 - 13x - 12x + 156 = 0$
	$\Rightarrow x(x - 13) - 12(x - 13) = 0$
	\Rightarrow (x - 13) (x - 12) = 0
	Either $x - 13$ or $x - 12 = 0$
	x = 13 or x = 12
	Therefore, Manya's marks in English = 13 and marks in Science = 30
	-13 = 17.

	or Manya's marks in English = 12 and marks in Science = $30 - 12 =$
	18.
Ans 5	Given $(x - a)(x - b) + (x - b)(x - c) + (x - 6)(x - a) = 0$
	$\Rightarrow x^{2} - ax - bx + ab + x^{2} - bx - cx + bc + x^{2} - cx - ax + ac = 0$
	$\Rightarrow 3x^2 - 2(a + b + c)x + ab + bc + ca = 0$
	Now, for equal roots, $D = 0$
	$\Rightarrow B^2 - 4AC = 0$
	$\Rightarrow 4(a + b + c)^2 - 12(ab + bc + ca) = 0$
	$4a^2 + 4b^2 + 4c^2 + 8ab + 8bc + 8ca - 12ab - 12bc - 12ca = 0$
	$\Rightarrow 2[2a^{2} + 2b^{2} + 2c^{2} - 2ab - 2bc - 2ca] = 0$
	$\Rightarrow 2[(a^2 + b^2 - 2ab) + (b^2 + c^2 - 2bc) + (c^2 + a^2 - 2ca)] = 0$
	$\Rightarrow [(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] = 0$
	$\Rightarrow a - b = 0, b - c = 0, c - a = 0$
	\Rightarrow a = b, b = c, c = a
	\Rightarrow a = b = c (Hence Proved)
Ans 6	Let the present age of Rehman be x years.
	Three years ago, Rehman's age = $(x - 3)$ years
	Five years from now, Rehman's age = $(x + 5)$ years
	Now, according to question, we have
	$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$
	$\Rightarrow \qquad \frac{x+5+x-3}{(x-3)(x+5)} = \frac{1}{3}$
	$\Rightarrow \qquad \frac{2x+2}{(x-3)(x+5)} = \frac{1}{3}$
	$\Rightarrow \qquad 6x+6 = (x-3)(x+5)$
	$\Rightarrow \qquad 6x+6 = x^2 + 5x - 3x - 15$
	$\Rightarrow \qquad x^2 + 2x - 15 - 6x - 6 = 0$
	$\Rightarrow \qquad x^2 + 2x - 15 - 6x - 6 = 0$

	$\Rightarrow x - 37 = 0 \text{ or } x - 8 = 0)$
	$\Rightarrow x = 37 \text{ or } x = 8$
	x = 37 is not possible (as length of pond will becomes $50-2\times37=-$
	24 which is not possible)
	Hence, $x = 8$ is acceptable.
	\therefore Length of pond = 50 - 2 × 8 = 34 m
	Breadth of pond= $40 - 2 \times 8 = 24$ m
Ans 8	Given, Zahlen and Zeba together have 25 balloons to blow air in.
	Let Zahlen plumped x balloons.
	Then, number of balloons Zeba plumped = $25-x$
	Both of them lost 5 balloons each due to bursting.
	\therefore The number of plumped balloons Zahlen has = $x-5$
	and the number of plumped balloons Zeba has = $25-x-5 = 20-x$
	Now, product of the number of balloons = 54
	:. $(x - 5) (20 - x) = 54$
	\Rightarrow 20x - x ² - 100 + 5x = 54
	$\Rightarrow -x^2 + 25x - 100 - 54 = 0$
	$\Rightarrow \qquad -x^2 + 25x - 154 = 0$
	\Rightarrow x ² - 25x + 154 = 0 [multiplying by (-1)]
	Now, by factorisation method, we get
	$x^2 - 11x - 14x + 154 = 0$
	\Rightarrow x(x - 11) - 14(x - 11) = 0
	$\Rightarrow \qquad (x-11)(x-14) = 0$

	\Rightarrow x-11=0 or x-14=0
	\Rightarrow x = 11 or x = 14
	When Zahlen has 11 balloons, then Zeba has $= 25 - 11 = 14$
	balloons.
	When Zahlen has 14 balloons, then Zeba has $= 25 - 14 = 11$
	balloons.
Ans 9	Let Gagan's marks in Maths be x,
	Then Marks in English = $(45 - x)$
	\therefore According to the question,
	$(x + 1) \times (45 - x + 1) = 500$
	$\Rightarrow (x + 1) \times (44 - x) = 500$
	$\Rightarrow 44x - x^2 + 44 - x = 500$
	$\Rightarrow - x^2 + 44x - 456 - x = 0$
	$\Rightarrow x^2 - 43x + 456 = 0$
	$\Rightarrow x^2 - 19x - 24x + 456 = 0$
	$\Rightarrow x (x - 19) - 24 (x - 19) = 0$
	\Rightarrow (x - 19) (x - 24) = 0
	Either $x - 19 = 0 \Rightarrow x = 19$
	or $x - 24 = 0 \Rightarrow x = 24$
	When $x = 19$, then $45 - 19 = 26$
	When $x = 24$, then $45 - 24 = 21$
	\therefore Gagan's marks in Maths = 19 and in English = 26
	Or Gagan's marks in Maths = 24 and in English = 21

Ans 10 Let the speed of the stream = x km/hrFor the motor boat, we have: Downstream speed = (16 + x) km/hrUpstream speed = (16 - x) km/hrFor going 60 km: Downstream = $\frac{60}{16+x}$ hours Upstream = $\frac{60}{16-x}$ hours According to the question, $\frac{60}{16-x} - \frac{60}{16+x} = 2$ $\Rightarrow 60 (16 + x) - 60 (16 - x) = 2 (16 - x) (16 + x)$ \Rightarrow 960 + 60x - 960 + 60x = 2 (256 - x²) $\Rightarrow 120x = 2 \times 256 - 2x^2$ $\Rightarrow x^2 + 60x = 256$ $\Rightarrow x^2 + 60x - 250 = 0 \dots (1)$ Comparing (1) with $ax^2 + bx + c = 0$, we get a = 1, b = 60, c = -256 $\therefore b^2 - 4ac = (60)^2 - 4(1)(-256)$ = 3600 + 1024= 4624 $\therefore \quad \mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$= \frac{-60 \pm \sqrt{4624}}{2(1)}$$

$$\Rightarrow x = \frac{-60 \pm 68}{2}$$
Taking +ve sign, we get $x = \frac{-60+68}{2} = \frac{8}{2} = 4$
Taking -ve sign, we get $x = \frac{-60-68}{2} = \frac{-128}{2} = -64$
Since, the speed of a stream cannot be negative,
 $\therefore x = -64$ is not admissible.
 $\therefore x = 4$
 \Rightarrow speed of the stream = 4 km/hr.

CHAPTER: 05

ARITHMETIC PROGRESSIONS

	COMPETENCY BASED QUESTIONS
Q1	The number of multiples of 4 between 10 and 250 is:
	(a)50
	(b)40
	(c)60
	(d)30
Q2	If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is
	(a) 13
	(b) 9
	(c) 21
	(d) 17
Q3	If the sum of n terms of an A.P. is $2 n 2 + 5 n 2n2+5n$, then its nth term is
	(a) 4n – 3
	(b) 3n – 4
	(c) 4n + 3
	(d) 3n + 4
Q4	If the sum of n terms of an A.P. be $3 n 2 + n 3n2+n$ and its common difference is 6, then its first term is
	(a) 2
	(b) 3
	(c) 1
	(d) 4
Q 5	If 17th term of an A.P. exceeds its 10th term by 7. The common difference is:
	(a)1

	(b)2
	(c)3
	(d)4
Q 6	The first term and common difference for the A.P. 3,1,-1,-3 is:
	(a)1 and 3
	(b)-1 and 3
	(c)3 and -2
	(d)2 and 3
Q 7	If $a=10$ and $d=10$, then first four terms will be:
	(a)10,30,50,60
	(b)10,20,30,40
	(c)10,15,20,25
	(d)10,18,20,30
Q 8	In an Arithmetic Progression, if $a=28$, $d=-4$, $n=7$, then an is:
	(a)4
	(b)5
	(c)3
	(d)7
Q 9	The middle most term (s) of the AP: -11 , -7 , -3 ,, 49 is:
	(a) 18, 20
	(b) 19, 23
	(c) 17, 21
	(d) 23, 25
Q10	If the common difference of an AP is 5, then what is a 18 – a 13 a18– a13?
	(a) 5
	(b) 20

	(c) 25
	(d) 30
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q	In a class the teacher asks every student to write an example of A.P. Two friends Geeta and Madhuri writes their progressions as -5, -2, 1,4, and 187, 184, 181, respectively. Now, the teacher asks various students of the class the following questions on these two progressions. Help students to find the answers of the questions.
(i)	Find the 34 th term of the progression written by Madhuri. (a) 286 (b) 88 (c) -99 (d) 190
(ii)	Find the sum of common difference of the two progressions.
(iii)	(a) 6 (b) -6 (c) 1 (d) 0 Find the 19 th term of the progression written by Geeta
(11)	(a) 40 (b) 50 (c) 52 (d) 52
(iv)	(a) 49 (b) 59 (c) 52 (d) 62 Find the sum of first 10 terms of the progression written by Geeta.
	(a) 85 (b) 95 (c) 110 (d) 200
(v)	(a) 31 (b) 33 (c) 32 (d) 30
Q 2	Amit was playing a number card game. In the game, some number cards (having both +ve or -ve numbers) are arranged in a row such that they are following an arithmetic progression. On his first turn, Amit picks up 6 th and 14 th card and finds their sum to be -76. On the second turn he picks up 8 th and 16 th card and finds their sum to be -96. Based on the above information, answer the following questions.
(i)	What is the difference between the numbers on any two consecutive cards? (a) 7 (b) -5 (c) 11 (d) -3
(ii)	The number on first card is (a) 12 (b) 3 (c) 5 (d) 7
(iii)	What is the number on the 19 th card?
(iv)	(a) -88 (b) -83 (c) -92 (d) -102
(17)	(a) -103 (b) -122 (c) -108 (d) -117
	(a) 102 (b) 122 (c) 100 (a) 117

(v)	The sum of numbers on the first 15 cards is
Q 3	India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.
(i)	In which year, the production is Rs 29,200.
	a) 12 (b) 13. (C) 15. (d) 20
(ii)	Find the production during first year.
	a) 5000 (b) 4000 (c) 3000 (d) 2000
(iii)	Find the difference of the production during 7th year and 4th year.
	(a) 6600 (b) 6000 (c) 1600 (d) 1100
(iv)	Find the production during first 3 years
	(a)21600 (b) 31299 (c) 10000 (d) 12345
(v)	Find the production during first 8 years
	(a)21600 (b) 31299 (c) 20400 (d) 12345
Q 4	Your elder brother wants to buy a car and plans to take loan from a bank for his car. He repays his total loan of Rs 1,18,000 by paying every month starting with the first instalment of Rs 1000. If he increases the instalment by Rs 100 every month , answer the following
(i)	The amount paid by him in 30th installment is a) 3900 b) 3500 c) 3700 d) 3600
(ii)	The amount paid by him in the 30 installments is a) 37000 b) 73500 c) 75300 d) 75000
(iii)	What amount does he still have to pay offer 30th installment? a) 45500 b) 49000 c) 44500 d) 54000
(iv)	If total installments are 40 then amount paid in the last installment? a) 4900

	b) 3900
	c) 5900
	d) 9400
(v)	The ratio of the 1st installment to the last installment is
	a) 1:49
	b) 10:49
	c) 10:39
	d) 39:10
05	Your friend Veer wants to participate in a 200m race. He can currently
2 -	run that distance in 51 seconds and with each day of practice it takes
	him 2 seconds less. He wants to do in 31 seconds
(i)	Which of the following terms are in AP for the given situation?
	a) 51,53,55
	b) 51, 49, 47
	c) -51, -53, -55
	d) 51, 55, 59
(ii)	What is the minimum number of days he needs to practice till his goal
	is achieved?
	a) 10
	b) 12
	c) 11
	d) 9
(iii)	Which of the following term is not in the AP of the above given
	situation?
	a) 41
	b) 30
	c) 37
	d) 39
(iv)	If nth term of an AP is given by
	an = $2n + 3$ then common difference of an AP is
	a) 2
	b) 3
	c) 5
	d) 1
(V)	The value of x, for which $2x$, $x + 10$, $3x + 2$ are three consecutive
	terms of an
	AP
	a) 6
	b) -6
	c) 18
	d) -18
	OBJECTIVE TYPE QUESTIONS (OTHER MCQs)
Q 1	If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its
-	18th term is
	a) v/
	(b) 88

	(c) 89
	(d) 90
Q 2	In an AP, if $d = -4$, $n = 7$, a n an $= 4$, then a is
	(a) 6
	(b) 7
	(c) 20
	(d) 28
Q 3	In an AP, if $a = 3.5$, $d = 0$, $n = 101$, then a n an will be
	(a) 0
	(b) 3.5
	(c) 103.5
	(d) 104.5
Q 4	The first four terms of an AP, whose first term is -2 and the common difference is -2 , are
	(a) – 2, 0, 2, 4
	(b) - 2, 4, - 8, 16
	(c) - 2, - 4, - 6, - 8
	(d) - 2, - 4, - 8, -16
Q 5	The number of multiples lie between n and x 2 x2 which are divisible by n is
	(a) n + 1
	(b) n
	(c) n – 1
	(d) n – 2
Q 6	If p, q, r and s are in A.P. then $r - q$ is
	(a) s – p
	(b) s - q
	(c) s – r
	(d) none of these
Q 7	The famous mathematician associated with finding the sum of the first 100 natural numbers is
	(a) Pythagoras

	(b) Newton
	(c) Gauss
	(d) Euclid
Q 8	The 21st term of the AP whose first two terms are -3 and 4 is
	(a) 17
	(b) 137
	(c) 143
	(d) -143
Q 9	If p, q, r, s, t are the terms of an A.P. with common difference -1 the relation between p and t is:
	(a) t = p - 5
	(b) $t = p - 4$
	(c) $t = p - 6$
	(d) $t = p + 4$
Q 10	If the 2nd term of an AP is 13 and the 5th term is 25, what is its 7th term?
	(a) 30
	(b) 33
	(c) 37
	(d) 38
	SHORT ANSWER TYPE QUESTIONS
Q 1	find the common difference of an AP
	6, 12, 18, 24, 30
Q 2	Write first four term of AP
	where a is 5 and d is 5
Q 3	Write the first term and the common difference of arithmetic progression 3,7,11, 15, 19,
Q 4	Which term of an AP 21,18,15 is 0?
Q 5	Find the 12 th term and 24 th term of an AP 9,13,17,?
Q 6	If the first term is 2 and the common difference is 5 and there are 15 terms. Then find the sum of AP .

Q 7	If the first term of an AP is 4, and the common difference is -3. Find the first four terms.
Q 8	1,70,139 Find common difference and sum of first 6 Term.
Q 9	Check whether -120 is a term of the AP :- 12,8,4
Q 10	In an AP :
	Given $a=8$, $d=2$, $an=46$. Find n
	LONG ANSWER TYPE QUESTIONS
Q 1	How many three digit number is divisible by 6.
Q 2	The sum of how many terms of the AP 8,15,22, is 395?
Q 3	If the AP is $16,32,48,64,$. Find the 19^{th} and 99^{th} term.
Q 4	Find the 21 st term if the AP:5,10,15,20,25,545.
Q 5	How many two digit positive integer are divisible by 8?
Q 6	The sum of the third and seventh terms of an AP is 10 and their sum of fourth and ninth terms is 13 find the sum of first fourteen terms of an AP.
Q 7	find the sum of last five terms of arithmetic progression5, 15, 25, 215, 225
Q 8	find the value of n where a is 6 and d is 2 last term is 26
Q 9	Find the number of multiples of 6 between 100 and 200.
Q 10	check whether - 200 is a term of an AP 11 comment 8, 5, 2,

CHAPTER-05

ARITHMETIC PROGRESSION

SOLUTION OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	Answer: (c) 60 Explanation: The multiples of 4 after 10 are: 12, 16, 20, 24, So here, a = 12 and d = 4 Now, 250/4 gives remainder 2. Hence, $250 - 2 = 248$ is divisible by 2. 12, 16, 20, 24,, 248 So, nth term, an = 248 As we know, an = a+(n-1)d 248 = 12+(n-1)×4 236/4 = n-1 59 = n-1 n = 60
Ans2	Answer: (c) 21 Explanation: Let 3 consecutive terms A.P is a -d, a, a + d. and the sum is 51 So, $(a -d) + a + (a + d) = 51$ $3a - d + d = 51$ $3a = 51$ $a = 17$ The product of first and third terms = 273 So, (a -d) (a + d) = 273 a2 -d2 = 273 172 -d2 = 273 289 -d2 = 273 d2 = 289 -273 d2 = 16 d = 4 Third term = a + d = 17 + 4 = 21
Ans3	(c) $4n + 3$ Explanation: Here $Sn = 2n2 + 5n$ Sum of the A.P with 1 term = $S1 = 2 + 5 = 7 =$ first term Sum of the A.P with 2 terms = 8 + 10 = 18 Sum of the A.P with 3 terms = $18 + 15 = 33$ a2 = S2 - S1 = $18 - 7 = 11$ d = a2 -a1 = $11 - 7 = 4$ nth term = a + (n-1) d = 7 + (n-1) 4 nth term = $4n + 3$
Ans4	Answer: (d) 4 Explanation: Here, S n = 3 n 2 + n Sn= 3 n 2 +n d = 6 Putting n= 1 S 1 S 1 = 3 + 1 = 4 Sum of first 1 term = first term = 4
Ans5	Answer: (a) 1 Explanation: N t h Nth term in AP is: a n an = $a+(n-1)d$ a 17 a17 = $a+(17-1)d$ a 17 a17 = $a + 16d$ In the same way, a 10 a10 = $a+9d$ Given, a 17 - a 10 = 7 a17-a10=7 Therefore, (a +16d)-(a+9d) = 7 7d = 7 d = 1 Therefore, the common difference is 1.
ANS6	Answer: (c) 3 and -2 Explanation: First term, a = 3 Common difference, d = Second term – First term \Rightarrow 1 – 3 = -2 \Rightarrow d = -2
ANS7	Answer: (b)10,20,30,40 Explanation: $a = 10$, $d = 10$ a 1 a1 = a = 10 a 2 = a 1 + d a2=a1+d = 10+10 = 20 a 3 = a 2 + d a3=a2+d = 20+10 = 30 a 4 = a 3 + d a4=a3+d = 30+10 = 40
ANS8	Answer: (a) 4 Explanation: For an AP, a n an = $a+(n-1)d = 28+(7-1)(-4) = 28+6(-4) = 28-24$ a n = 4
ANS9	Answer: (c) 17, 21 Explanation: Here, $a = -11 d = -7 - (-11) = 4$ And a n an = 49 We have, a n an = $a + (n - 1)d \Rightarrow 49 = -11 + (n - 1)d \Rightarrow 60 = (n - 1)d \Rightarrow n = 16$ As n is an even number, there will be two middle terms which are 16/2th and [(16/2)+1]th, i.e. the 8th term and the 9th term. a 8 a8 = $a + 7d = -11 + 7 \times 4 = 17$ a 9 a9 = $a + 8d = -11 + 8 \times 4 = 21$

ANS10	Answer: (c) 25 Explanation: Since, d = 5 a 18 - a 13 a18-a13 = a + $17d - a - 12d = 5d = 5 \times 5 = 25$
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
1	□ Geeta's A.P. is -5, -2, 1,4, Here, first term $(a_1) = -5$ and common difference $(d_1) = -2 + 5 = 3$ Similarly, Madhuri's A.P. is 187, 184, 181, Here first term $(a_2) = 187$ and common difference $(d_2) = 184 - 187 = -3$ (i) (b): $t_{34} = a_2 + 33d_2 = 187 + 33(-3) = 88$ (ii) (d): Required sum = 3 + (-3) = 0 (iii) (a): $t_{19} = a_1 + 18d_1 = (-5) + 18(3) = 49$ (iv) (a) : S10=n2[2a1+(n-1)d1]=102[2(-5)+9(3)]=85S10=n2[2a1+(n-1)d1]=102[2(-5)+9(3)]=85 (v) (b): Let n th terms of the two A.P:s be equal. 5 + (n - 1)3 = 187 + (n - 1)(-3) ⇒⇒ 6(n - 1) = 192 ⇒ n = 33 □ Here the savings form an A.P. i.e., Rs 2.75, Rs 3, Rs 3.25, So, a = 2.75, d = 3 - 2.75 = 0.25
2	 (i) (b.) -5, a6 + a14 = -76 and a8 + a16 = -96 solve for a an d. (ii) (d.) 7 (iii) (b.) -83 (iv) (a) - 103. a23 = a + 22d = 7 + 22(-5) = 7-110 = -103 (v) (d) -420 solve Sn for n =15, a=7, d=-5
3	 (i) (a) N = 12 (ii) (a) Rs 5000 (ii) (a) Difference = 18200 - 11600 = 6600 (iv) (a) Production during first 3 year = 5000 + 7200 + 9400 = 21600 (v) (c) Production during 8th year is (a+7d) = 5000 + 2(2200) = 20400
4	(i) a) 3900

	(ii) b) 73500
	(iii) (c) 44500
	(iv) (a) 4900
	(v) (b) 10:49
5	(i). b (ii) c (iii). b (iv) a (v) a
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
1	(c) 89 Explanation: Here, $a7 = 34$ $a13 = 64$ $a7 = a + 6d = 34$ (1) $a13 = a + 12d = 64$ (2) Subtracting (1) from (2) $6d = 30$ $d = 5$ Multiplying (1) by 2 $2a + 12d = 68$ (3) Subtracting (2) from (3) $a = 4$ $a18 = a + (n-1)$ d $a18 = 4 + (17) 5$ $a18 = 89$
2	Answer: (d) 28 Explanation: For an A.P a n an = $a + (n - 1)d 4 = a + (7 - 1)(-4) 4 = a + 6(-4) 4 + 24 = a a = 28$
3	3. Answer: (b) 3.5 Explanation: For an A.P a n an = a + (n - 1)d = $3.5 + (101 - 1) \times 0 = 3.5$
4	(c) -2 , -4 , -6 , -8 Explanation: Let the first four terms of an A.P are a, a+d, a+2d and a+3d Given that the first termis -2 and difference is also -2 , then the A.P would be: -2 , $(-2-2)$, $[-2 + 2(-2)]$, $[-2 + 3(-2)] = -2$, -4 , -6 , -8
5	(d) n – 2
6	(c) s – r
7	(c) Gauss Explanation: Gauss is the famous mathematician associated with finding the sum of the first 100 natural Numbers
8	(b) 137
9	(b) $t = p - 4$
10	(b) 33
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
1	6
2	,10,15,20

3	A=3 d=4
4	0=21+(n-1)-3, n=8
5	A12= 9+(12-1)4=53 and a24=9+(24-1)4=101
6	S15=15/2(2x2+14x5)
7	4,1,-2,-5,-8
8	S6=6/2(2x1+(6-1)69)
9	Yes as n=34
10	46=8+(n-1)2
	N=20
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
1	A= 102 d= 6 An = 996
	996=102+ (n-1)6
2	395=n/2(8x2+(n-1)7)
3	A19=16+(19-1)16 and A99=16+(99-1)16
4	A21= 5+(21-1)5
5	A=16 d=8 An=96
	96=16+(n-1)8
	n=11
6	A+4d=5 and 2a+11d=13
	D=1 a=1 s14= 14/2(1+14)
7	S5 = 5/2 (200+225)
8	26=6+(n-1)2
	N=11

CHAPTER: 06

TRIANGLES

	COMPETENCY BASED QUESTIONS
Q1	Hypotenuse of a right triangle is 25 cm and out of the remaining two
	sides, one is longer than the other by 5 cm. The lengths of the other
	two sides are-
	(a) 15 cm and 10 cm
	(b) 15 cm and 20 cm
	(c) 12 cm and 23 cm
	(d) 10 cm and 15 cm
Q2	In $\triangle ABC$, $AB = 24$ cm, $BC = 10$ cm and $AC = 26$ cm, such that the $\triangle ABC$
	is-
	(a) a right triangle
	(b) an acute angled triangle
	(c) obtuse angled triangle
	(d) a right isosceles triangle
Q3	ABC and BDE are two equilateral triangles such that D is the mid-point
	of BC. Ratio of the areas of triangles ABC and BDE is-
	(a) 2 : 1
	(b) 4 : 1
	(c) 1 : 2
	(d) 1:4
Q4	If S is a point on side PQ of a \triangle PQR such that PS = QS = RS, then-

	(a) PR . QR = RS2
	(b) QS2 + RS2 = QR2
	(c) PR2 + QR2 = PQ2
	(d) PS2 + RS2 = PR2
Q 5	If in a triangle, square of one side is equal to the sum of the squares of
	the other two sides, then the angle opposite the first side is-
	(a) an acute angle
	(b) obtuse angle
	(c) a right angle
	(d) a reflex angle
Q 6	Identify the one which is not the congruence criteria of two triangles.
	(a) RHS
	(b) SAS
	(c) ASA
	(d) AAS
Q 7	If $\triangle ABC \sim \triangle QRP$, ar(ABC)/ar(PQR) = 9/4, AB = 18 cm and BC = 15 cm,
	then PR is equal to-
	(a) 10 cm
	(b) 12 cm
	(c) 20/3 cm
	(d) 8 cm

the following is not true?	
(a) EF/PR = DF/PQ	
(b) $DE/PQ = EF/RP$	
(c) $DE/QR = DF/PQ$	
(d) $EF/RP = DE/QR$	
Q 9 If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which following is not true?	h of the
(a) BC . EF = AC. FD	
(b) AB . EF = AC. DE	
(c) BC . DE = AB. EF	
(d) BC . $DE = AB$. FD	
Q10 D and E are respectively the points on the sides AB and AC	of a triangle
ABC such that $AD = 2 \text{ cm}$, $BD = 3 \text{ cm}$, $BC = 7.5 \text{ cm}$ and DE	BC.
Then, length of DE (in cm) is-	
(a) 2.5	
(b) 3	
(c) 5	
(d) 6	
CASE STUDIES/ SOURCE BASED INTEGRATED QUE	STIONS
Q 1 Meenal was trying to find the height of the tower near his h	ouse. She is
using the properties of similar triangles. The height of Meen	al's house
is 20 m. When Meenal's house casts a shadow of 10m long	on the
ground, at the same time, the tower casts a shadow of 50 r	n long and

	Arun's house casts a shadow of 20 m long on the ground as shown
	below.
	Arun's house 20 m Arun's house 20 m Arun's house 50 m Arun's house Arun's house 10 m
	Based on the above information, answer the following questions.
(i)	What is the height of the tower?
	(a) 100 m (b) 50 m (c) 15 m (d) 45 m
(ii)	What will be the length of the shadow of the tower when Meenal's
	house casts a shadow of 15 m?
	(a) 45 m (b) 70 m (c) 75 m (d) 72 m
(iii)	Height of Aruns house is
	(a) 80 m (b) 75 m (c) 60 m (d) 40 m
(iv)	If the tower casts a shadow of 40 rn, then find the length of the
	shadow of Arun's house
	(a) 18 m (b) 17 m (c) 16 m (d) 14 m
(v)	If the tower casts a shadow of 40 m, then what will be the length of
	the shadow of Meenal's house?
	(a) 7 m (b) 9 m (c) 4 m (d) 8 m
Q 2	In a classroom, students were playing with some pieces of cardboard as shown below.

	(a) $m^2 + n^2 = r^2$ (b) $m^2 + n^2 + r^2 = 0$
	(c) $m^2 + n^2 = 2r^2$ (d) none of these
(iii)	If $\Delta ABJ \sim \Delta ADH$, then which similarity criterion is used here?
	(a) AA (b) SAS (c) AAS (d) SSS
(iv)	If $\angle ABJ = 90^{\circ}$ and B, J are mid points of sides AD and AH respectively
	and BJ DH, then which of the following option is false?
	(a) $\triangle ABJ \sim \triangle ADH$ (b)2BJ=DH (c)AJ ² =JB ² +AB ² (d)AB/BD=AJ/AH
(v)	If ΔPQR is right triangle with QM \perp PR, then which of the following is
	not correct?
	(a)ΔPMQ~ΔPQR
	$(b)QR^2 = PR^2 - PQ^2$
	(c)PR ² =PQ+QR
	(d)ΔPMQ~ΔQMR
Q 3	An aeroplane leaves an airport and flies due north at a speed of 1200km /hr. At the same time, another aeroplane leaves the same station and flies due west at the speed of 1500 km/hr as shown below. After 1 1/2 hr both the aeroplanes reaches at point P and Q respectively.
	$W \underbrace{ \begin{array}{c} & & \\ $
-------	---
(i)	Distance travelled by aeroplane towards north after 1 1/2 hr is
	(a) 1800 km (b) 1500 km (c) 1400km(d) 1350 km
(ii)	Distance travelled by aeroplane towards west after 1 1/2 hr is
	(a) 1600 km (b) 1800 km (c) 2250km(d) 2400 km
(iii)	In the given figure, $\angle POQ$ is
	(a) 70° (b) 90° (c) 80° (d) 100°
(iv)	Distance between aeroplanes after 1 1/2 hr is
	(a)450√41 km (b)350√31 km (c)125√12 km (d)472√41 km
(v)	Area of ΔΔPOQ is
	(a) 185000km ² (b) 179000km ² (c) 186000km ² (d) 2025000 km ²
Q 4	Minister of a state went to city Q from city P. There is a route via city R
	such that PR \perp RQ. PR = 2x km and RQ = 2(x + 7) km. He noticed that
	there is a proposal to construct a 26 km highway which directly
	connects the two cities P and Q.
1	

	$ \frac{P}{2x} = \frac{1}{2(x+7)} Q $
	Based on the above information, answer the following questions.
(i)	Which concept can be used to get the value of x?
	(a) Thales theorem (b) Pythagoras theorem
	(c) Converse of thales theorem (d) Converse of Pythagoras theorem
(ii)	The value of x is
	(a) 4 (b) 6 (c) 5 (d) 8
(iii)	The value of PR is
	(a) 10 km (b) 20 km (c) 15 km (d) 25 km
(iv)	The value of RQ is
	(a) 12 km (b) 24 km (c) 16 km (d) 20 km
(v)	How much distance will be saved in reaching city Q after the construction of highway?
	(a) 10 km (b) 9 km (c) 4 km (d) 8 km
Q 5	Class teacher draw the shape of quadrilateral on board. Ankit observed the shape and explored on his notebook in different ways as shown below.

	A = B $B = C$ $F = B$ $B = C$ $F = B$ $A =$
(i)	i) In if ABCD is a trapezium with AB CD, E and F are points on non-
	parallel sides AD and BC respectively such that EF AB, then AE/ED=
	(a) BE/CD (b) AB/CD (c) BF/FC (d) None of these
(ii)	(ii) In if AB CD, and DO = $3x - 19$, OB = $x - 5$, OC = $x - 3$ and AO =
	3, then the value of x can be
	(a) 5 or 8 (b) 8 or 9 (c) 10 or 12 (d) 13 or 14
(iii)	(iii) In if $OD = 3x - 1$, $OB = 5x - 3$, $OC = 2x + 1$ and $AO = 6x - 5$, then
	the value of x is
	(a) 0 (b) 1 (c) 2 (d) 3
(iv)	In \triangle ABC, if PQ BC and AP = 2.4 cm, AQ = 2 cm, QC = 3 cm and BC
	= 6 cm, then AB + PQ is equal to
	(a) 7.2 cm (b) 5.9 cm (c) 2.6 cm (d) 8.4 cm
(v)	In ΔDEF , if RS EF, DR = 4x - 3, DS = 8x - 7, ER = 3x - 1 and FS =
	5x - 3, then the value of x is
	(a) 1 (b) 5.9 cm (c) 2.6 cm (d) 8.4 cm
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	An acute triangle has only one acute angle. (True/ False)
Q 2	The sum of two interior opposite angles is equal to
Q 3	A triangle can be both isosceles and obtuse. (True/ False)

Q 4	If the length of sides of triangle is a, b and c. Semi-perimeter of
	triangle is s. Then the area of triangle is equal to
Q 5	An isosceles triangle is a triangle which has exactly two sides with
	equal length. (True/ False)
Q 6	There are ways available for finding two triangles congruent.
Q 7	A triangle may contain two obtuse angles. (True/ False)
Q 8	All isosceles triangles are similar. (True/ False)
Q 9	A right angled triangle can also be isosceles triangle. (True/ False)
Q 10	The largest side of a right angles triangle is known as
	SHORT ANSWER TYPE QUESTIONS
Q 1	If $\triangle ABC \sim \triangle PQR$, perimeter of $\triangle ABC = 32$ cm, perimeter of $\triangle PQR = 48$
	cm and $PR = 6$ cm, then find the length of AC.
Q 2	In $\triangle ABC$, DE BC, find the value of x.
	x + 3 D E
	x+1/x+5
	в
Q 3	The sides AB and AC and the perimeter P, of ΔABC are respectively
	three times the corresponding sides DE and DF and the perimeter P, of
	ΔDEF . Are the two triangles similar? If yes, find ar($\triangle ABC$)/ar($\triangle DEF$).
Q 4	In the following figure, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.

	B B C
Q 5	In an equilateral triangle of side $3\sqrt{3}$ cm, find the length of the altitude.
Q 6	In the given figure PQ BA; PR CA. If PD = 12 cm. Find BD X CD.
Q 7	In figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 6 cm and 8 cm respectively. Find the side AB if the area of $\triangle ABC = 63 \text{ cm}^2$.
Q 8	ΔABC is an isosceles triangle in which AC = BC. If $AB^2 = 2AC^2$ then, prove that ΔABC is right triangle.
Q 9	In the figure, if PQ RS, prove that Δ POQ ~ Δ SOR.

Q 10	A vertical pole of length 6 m casts a shadow 4 m long on the ground
	and at the same time a tower casts a shadow 28 m long. Find the
	height of the tower.
	LONG ANSWER TYPE QUESTIONS
Q 1	State and prove Converse of Pythagoras' Theorem.
Q 2	Show that the area of the triangle on the hypotenuse is equal to the
	sum of the areas of triangles on the other two sides.
Q 3	In $\triangle ABC, AX \perp BC$ and Y is middle point of BC. Then prove that (i) $AB^2 = AY^2 + 4BC^2 - BC.XY$ (ii) $AC^2 = AY^2 + 4BC^2 + BC.XY$
Q 4	In figure, AB PQ CD, AB = x units, CD = y units and PQ = z units, prove that $1/x + 1/y = 1/z$.

CHAPTER-06

TRIANGLE

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(b) By applying Pythagoras Theorem $AB^2 + BC^2 = AC^2$ $x^2 + (x+5)^2 = 625$ $2x^2 + 25 + 10x = 625$ $2x^2 + 10x - 600 = 0$ x = 15,-20 x = 15 Length of side of triangle are 15, 20
Ans 2	(a)
Ans 3	(b) ABC and BDE are two equilateral triangles.
	All angles are 60°, then they are all similar triangles
	Ratio of area of similar triangles is equal to ratio of square of their sides.
	Area of triangle BDE/Area of triangle ABC = $BC2/BD^2$
	$BC = 2 \times BD$ (due to the mid point theorem)
	Area of triangle BDE/Area of triangle ABC = $(2BD)2/BD^2$
	4BD ² /BD ²
	4:1
Ans 4	(c)
Ans 5	(c)
Ans 6	(d)
Ans 7	(a) Given, the triangles ABC and PQR are similar.
	Area of ABC/Area of PQR = $9/4$
	The length of the sides
	AB = 18 cm

	Since DE BC, the corresponding angles are equal.
	∠ADE = ∠ABC
	∠AED= ∠ACB
	Thus by AA similarity we find $\triangle ADE$ and $\triangle ABC$ are similar.
	△ADE ~ △ABC
	If two triangles are similar, then their sides are proportional.
	AE/AC = DE/BC = AD/AB
	So, AD/AB = DE/BC
	AB = AD + BD = 2 + 3 = 5 cm
	2/5 = DE/7.5
	2(7.5) = (5)DE
	DE = 15/5
	DE = 3 cm
	Therefore, the length of DE is 3cm.
	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Ans 1	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS (i) (a): Since ΔABC - ΔPQR
Ans 1	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS (i) (a): Since $\triangle ABC - \triangle PQR$ $A = \int_{D} \int_$
Ans 1	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS (i) (a): Since $\triangle ABC - \triangle PQR$ $A = \int_{B} \int_{SOm} \int_{C} \int_{Dm} \int_{R} \int_{R} \int_{Dm} \int_{Dm} \int_{R} \int_{Dm} \int_{Dm} \int_{R} \int_{Dm} \int_{R} \int_{Dm} \int_{Dm} \int_{R} \int_{Dm} \int_{Dm} \int_{R} \int_{Dm} \int_{Dm} \int_{R} \int_{Dm} \int_{D$
Ans 1	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS (i) (a): Since $\triangle ABC - \triangle PQR$ $A = \int_{D} $
Ans 1	Therefore, the length of DE is 3cm. SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS (i) (a): Since $\triangle ABC - \triangle PQR$ AB/PQ=BC/QR x/20=50/10 x=100

	(iv) (d): Since, $\Delta ABJ \sim \Delta ADH \Delta ABJ \sim \Delta ADH$ [By AA similarity criterion]
	∴ AB/AD=AJ/AH.
	(v) (c): Since, $PR^2 = PQ^2 + QR^2$ [By Pythagoras theorem]
Ans 3	(i) (a): Speed = 1200 km/hr
	Time =1 1/2hr=32hr
	\therefore Required distance = Speed x Time
	=1200×3/2=1800 km
	(ii) (c): Speed = 1500 km/hr
	Time = 32 hr.
	\therefore Required distance = Speed x Time
	=1500×3/2=2250 km
	(iii) (b): Clearly, directions are always perpendicular to each other.
	∴∠POQ=90∘
	(iv) (a): Distance between aeroplanes after 1 1/2 hour
	$=\sqrt{[(1800)^2+(2250)^2]}=\sqrt{(3240000+5062500)}=$ $\sqrt{8302500}=450\sqrt{41}$ km
	(v) (d): Area of $\Delta POQ = 1/2x$ base x height
	=12×2250×1800=2250×900=2025000 km ²
Ans 4	(i) (b)
	(ii) (c): Using Pythagoras theorem, we have $PQ^2 = PR^2 + RQ^2$
	$(26)^2 = (2x)^2 + (2(x+7))^2 \Rightarrow 676 = 4x^2 + 4(x+7)^2$
	$169=2x^2+49+14x$
	$x^{2}+7x-60=0$
	$x^{2}+12x-5x-60=0$
	$x(x+12)-5(x+12)=0 \Rightarrow (x-5)(x+12)=0$

	x=5, x=-12
	∴x=5 [Since length can't be negative]
	(iii) (a) : PR = 2x = 2 x 5 = 10 km
	(iv) (b): $RQ = 2(x + 7) = 2(5 + 7) = 24 \text{ km}$
	(v) (d): Since, PR + RQ = 10 + 24 = 34 km Saved distance = 34-26= 8 cm
Ans 5	(i) (c)
	(ii) (b): Since $\triangle AOB \sim \triangle COD$ [ByAA similarity criterion]
	$AO/OC=BO/OD \Rightarrow 3x-3=x-53x-19$
	3(3x-19)=(x-5)(x-3)
	$9x-57=x^2-3x-5x+15 \Rightarrow x^2-17x+72=0$
	(x−8)(x−9)=0⇒x=8 or 9
	(iii) (c) : Since, $\Delta AOB \sim \Delta COD$ [ByAA similarity criterion]
	$\therefore AO/OC = BO/OD \Rightarrow 6x - 52x + 1 = 5x - 33x - 1$
	$\Rightarrow(6x-5)(3x=1)=(5x-3)(2x+1)$
	$\Rightarrow 18x^2 - 6x - 15x + 5 = 10x^2 + 5x - 6x - 3$
	$\Rightarrow 8x^2 - 20x + 8 = 0 \Rightarrow 2x^2 - 5x + 2 = 0$
	From options, $x = 2$ is the only value that satisfies this equation.
	(iv) (d): Since, $\Delta APQ \sim \Delta ABC$ [ByAA similarity criterion]
	$AP/AB = AQ/AC = PQ/BC \Rightarrow 2.4/AB = 2/5 = PQ/6$
	$AB=2.4\times5/2=6$ cm and PQ=2×6/5=2.4 cm
	∴AB+PQ=6+2.4=8.4 cm
	(v) (a): Since, $\Delta DRS \sim \Delta DEF$ [ByAA similarity criterion]
	$\therefore DE/DR = DF/DS \Rightarrow (DE/DR) - 1 = (DF/DS) - 1$
	(DE-DR)/DR=(DF-DS)/DS

	ER/DR=FS/DS
	DR/ER=DS/FS
	(4x-3)/(3x-1)=(8x-7)/(5x-3)
	$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$
	$\Rightarrow 4x^2 - 2x - 2 = 0 \Rightarrow 2x^2 - x - 1 = 0$
	Only option (a) i.e., $x = 1$ satisfies this equation.
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN
	MCQs)
1	False
2	Exterior Angle
3	True
4	√s(s-a)(s-b)(s-c)
5	False
6	Five
7	False
8	False
9	True
10	Hypotenuse
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
1	Given- $\triangle ABC \sim \triangle PQR$.
	Therefore,
	<u>Perimeter of $\triangle ABC} = AC$</u>
	Perimeter of ΔABC PR

	<u>32</u> = <u>AC</u>
	48 6
	AC=4 cm
2	Given- In ΔABC DE BC.
	<u>AD</u> = <u>AE</u> Thales Theorem
	BD EC
	x(x + 5) = (x + 3)(x + 1)
	$x^2 + 5x = x^2 + 3x + x + 3$
	$x^{2} + 5x - x^{2} - 3x - x = 3$
	$\therefore x = 3 \text{ cm}$
3	Given: AB = 3DE and AC = 3DF
	<u>Perimeter of $\triangle ABC = AB = AC = 3 - (Given)$</u>
	Perimeter of $\triangle ABC$ DE DF
	$\Delta ABC \sim \Delta DEF$ (SSS similarity)
	$\underline{\operatorname{ar}(\Delta ABC)} = \left(\underline{AB}\right)^2 = \left(\underline{3}\right)^2 = 9$
	$ar(\Delta DEF)$ DE 1
	Because The ratio of the areas of two similar Δs is equal to the ratio of the squares of their corresponding sides
4	It is given that $\triangle ABE \cong \triangle ACD$.
	$\therefore AB = AC [By CPCT] (1)$
	And, $AD = AE [By CPCT] (2)$
	In ΔADE and ΔABC ,

	[Dividing equation (2) by (1)
	∠A = ∠A [Common angle]
	$\therefore \Delta ADE \sim \Delta ABC$ [By SAS similarity criterion]
5	Given side of an equilateral triangle ABC=33cm
	Let AD=h (altitude)
	BD = 1/2BC (Altitude bisect the base)
	BD=1/2.3√3=3√3/2 cm
	$AB^2 = AD^2 + BD^2$
	$(3\sqrt{3})^2 = (h)^2 + (3\sqrt{3}/2)^2$
	27=h ² +27/4
	h ² =108-27/4
	h ² =81/7
	h=81/4
	h=9/2
	=4.5cm
	Hence, the length of the altitude h is 4.5 cm
6	In Δ BRD, PQ BR as PQ BA
	So by basic Proportionality Theorem,
	PD/BR=DQ/DR(i)
	In Δ PRD, CQ PR as PR CA
	So By basic proportionality theorem.
	CD/PD=DQ/DR(ii)
	From eq (i) and eq (ii)
	PD/BD=CD/PD
	Cross multiplying we get,
	$PD \times PD = BD \times CD$
	\Rightarrow BD \times CD = PD2 = 122

	\Rightarrow BD \times CD = 144
	\therefore the product of BD and CD is 144.
7	x cm F 6 cm B 6 cm C B cm C C C
	Let AF=AE=x. Length of Tangent from an external point is equal.
	Area of $\triangle ABC = Area$ of $\triangle OBC + Area$ of $\triangle OAB + Area$ of $\triangle OAC$
	63=1/2x14x3+1/2x(6+x)x3+1/2x(8+x)x3
	63=3/2(14+6+x+8+x)
	42=28+2x
	2x=14
	x=7
	AB=(6+7)cm=13cm
8	$AB^2 = 2AC^2$
	$AB^2 = AC^2 + AC^2$
	Also AC=BC
	$AB^2 = AC^2 + BC^2$
	By converse of Pythagoras theorem, ΔABC is right triangle where $\angle C=90^{\circ}$.
9	Given,
	PQ RS
	$\angle P = \angle S$ (Alternate angles)
	and $\angle Q = \angle R$

	Also, $\angle POQ = \angle SOR$ (Vertically opposite angles)
	Therefore, Δ POQ ~ Δ SOR (by AAA similarity criterion)
	Hence proved.
10	Given,
	Length of the vertical pole = 6 m
	Shadow of the pole = 4 m
	Let the height of the tower be h m.
	Length of the shadow of the tower = 28 m
	In $\triangle ABC$ and $\triangle DFE$,
	$\angle C = \angle E$ (angle of elevation)
	$\angle B = \angle F = 90^{\circ}$
	By AA similarity criterion,
	$\Delta ABC \sim \Delta DFE$
	We know that the corresponding sides of two similar triangles are proportional.
	AB/DF = BC/EF
	6/h = 4/28
	$h = (6 \times 28)/4$
	$h = 6 \times 7$
	h = 42
	Hence, the height of the tower = 42 m .
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
1	The converse of Pythagoras theorem is states that:

In a triangle, if the square of one longest side is equal to the sum of squares of the other two sides then the angle opposite the first side is a right angle.

Now, to prove this statement let us consider two triangles $\triangle ABC \& \triangle PQR$ from which $\triangle PQR$ is right-angled at Q.

In ΔABC we have AC as the longest side and by Pythagoras theorem we get

⇒AC2=AB2+BC2.....(i)

We have to prove that $\triangle ABC$ is right triangle.

Now, we construct another triangle $\triangle PQR$ which is a right triangle $\angle Q=90\circ$ and AB=PQ and BC=QR.

So, by Pythagoras theorem we have PR2=QR2+PQ2

Now, by construction we have AB=PQ&BC=QR

So, substituting the values we get

⇒PR2=AB2+BC2.....(ii)

Now, from equation (i) and (ii) we get

⇒AC2=PR2⇒AC=PR

Now, in $\triangle ABC \& \triangle PQR$ we have

 \Rightarrow AB=PQ \Rightarrow BC=QR (by construction)

 \Rightarrow AC=PR (Proved above)

So we get $\triangle ABC \cong \triangle PQR$ (SSS congruency)

So we get

	$\angle Q = \angle B$ (corresponding angles of congruent triangles)
	And we have ∠Q=90∘
	So, ∠B=90∘
	Hence proved that $\triangle ABC$ is right triangle.
2	Given A right angled triangle ABC with right angle at B. Equilateral
	triangles PAB, QBC and RAC are described on sides AB, BC and CA respectively.
	To prove Area(\triangle PAB)+Area(\triangle QBC)=Area(\triangle RAC).
	Proof Since triangles PAB, QBC and RAC are equilateral. Therefore,
	they are equiangular and hence similar.
	$\therefore \underline{\text{Area}(\triangle RAC)} + \underline{\text{Area}(\triangle RAC)} = \underline{AB}^2 + \underline{BC}^2$
	Area(\triangle PAB) Area(\triangle QBC) AC ² AC ²
	<u>Area(\triangleRAC)</u> + <u>Area(\triangleRAC)</u> = <u>AB² + BC²</u>
	Area(\triangle PAB) Area(\triangle QBC) AC ²
	$\underline{\text{Area}(\triangle RAC)} + \underline{\text{Area}(\triangle RAC)} = \underline{AC}^2$
	Area(\triangle PAB) Area(\triangle QBC) AC ²
	[Because \triangle is a right angled triangle with $\angle B=90^{\circ}$, $AC^2 = AB^2 + BC^2$]
	<u>Area(△PAB)+Area(△QBC)</u> =1
	Area(△RAC)
	Area(\triangle PAB)+Area(\triangle QBC)=Area(\triangle RAC)
	[Hence proved]

	Also, We know that
	If two triangles are similar, then the ratio of the area of both triangles is
	equal to the square of the ratio of their corresponding sides
	∴ar(△EFD)/ar(△ABC)=(AB/EF) ² =4 [from (i)]
	⇒ar(∆ABC)/ar(∆EFD)=1/4
	Hence, the ratio of the areas of ${\scriptstyle \Delta DEF}$ and ${\scriptstyle \Delta ABC}$ is 1:4 .
7	We have,
	InΔABC
	P and Q are mid-point of side BC and CA respectively.
	Given that,
	CQ:QA=1:3 and CP=4
	Then, BC=?
	So,
	We know that,
	Similar triangle theorem,
	In ΔABC
	QACQ=PBCP
	31=PB4
	PB=12
	Now,
	BC=BP+PB
	BC=12+4
	BC=16
	Hence, this is the answer.

CHAPTER: 07

COORDINATE GEOMETRY

	COMPETENCY BASED QUESTIONS
Q-1	The distance of the point (2,3) from the x-axis is
	(a) 2 (b) 3 (c) 1 (d) 5
Q-2	The distance of the point $P(-6,8)$ from the origin is
	(a) 8 (b) 2√7 (c) 10 (d) 6
Q-3	The distance between the points $A(0,6)$ and $B(0,-2)$ is
	(a) 6 (b) 8 (c) 4 (d) 2
Q-4	The distance between the points (0,5) and (-5,0) is
	(a) 5 (b) $5\sqrt{2}$ (c) $2\sqrt{5}$ (d) 10
Q-5	If the distance between the points (2,-2) and (-1,y) is 5, then the
	value of y is
	(a) -2 (b) 2 (c) -1 (d) 1
Q-6	If the distance between the points $(4,p)$ and $(1,0)$ is 5, then value of
	p is
	(a) 4 only (b) ±4 (c) -4 only (d) 0
Q-7	The mid-point of the line segment joining the points $A(-2,8)$ and $B(-$
	6,-4) is
	(a) (-4,-6) (b) (2,6) (c)(-4,2) (d) (4,2)
Q-8	If $P(\frac{a}{3}, 4)$ is the mid-point of the line segment joining the points Q(-
	6,5) and R(-2,3), then the value of a is
	(a) -4 (b) -12 (c) 12 (d) -6

Q-9	The values of y, for which the distance between the points $P(2,-3)$
	and Q(10,y) is 10 units, are
	(a) 9,6 (b) 3,-9 (c) -3,9 (d) 9,-6
Q-10	ABCD is a rectangle whose three vertices are $A(0,3)$, $B(0,0)$ and
	C(5,0). Then the length of its diagonal is
	(a) 5 (b) 3 (c) $\sqrt{34}$ (d) 4
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q-1	SEATING ARRANGEMENT
	In a classroom, four friends are seated at the points A, B, C and D
	as shown below. All the friends are observing this seating
	arrangement and ask different questions to each other.
	Observe the seating arrangement and help them to answer the
	following questions:
	9
	7
	20 6
	3
	2 D D
	1 2 3 4 5 6 7 8 9 10 Columns
(i)	The co-ordinates of point A and point B respectively are
	(a) (4,3) and (7,6)
	(b) (4,3) and (6,7)
	(c) (3,4) and (7,6)
	(d) (3,4) and (6,7)
(ii)	What are the coordinates of point C and D respectively?
	(a) (6,1) and (9,4)
	(b) (1,6) and (4,9)

	(c) (9,4) and (6,1)	
	(d) (9,4) and (1,6)	
(iii)	What is the distance between two friends seating at point A and B?	
	(a) 2√5 units	
	(b) 3√2 units	
	(c) $2\sqrt{3}$ units	
	(d) None of these	
(iv)	What is the distance between two friends seating at point A and C?	
	(a) √26 units	
	(b) 6 units	
	(c) 4 units	
	(d) None of these	
(v)	Given seating arrangement is in the form of a	
	(a) rhombus	
	(b) kite	
	(c) square	
	(d) None of these	
Q-2	LOCALITY	
	Alia and Shagun	
	are friends living	
	on the same 2-	
	street in Patel 1- B C	
	Nagar. Shagun's $x = 1$ of 1 2 3 4 x	
	house is at the	
	intersection of	
	one street with another street on which there is a library.	
	They both study in the same school and that is not far from Shagun's house.	

	Suppos	e the school is situated at the point O, i.e., the origin, Alia's
	house is	s at A. Shagun's house is at B and library is at C. Based on
	the abo	ve information, answer the following questions.
(i)	How far is Alia's house from Shagun's house?	
	(a)	3 units
	(b)	4 units
	(c)	5 units
	(d)	2 units
(ii)	How fa	r is the library from Shagun's house?
	(a)	3 units
	(b)	2 units
	(c)	5 units
	(d)	4 units
(iii)	How far	is the library from Alia's house?
	(a)	2 units
	(b)	3 units
	(c)	4 units
	(d)	None of these
(iv)	Which of the following is true?	
	(a)	ABC forms a scalene triangle
	(b)	ABC forms an isosceles triangle
	(c)	ABC forms an equilateral triangle
	(d)	None of these
(v)	How far	is the school from Alia's house than Shagun's house?
	(a)	$\sqrt{13}$ units
	(b)	√5 units
	(c)	$(\sqrt{13} + \sqrt{5})$ units
	(d)	(√13 - √5) units

Q-3	"NO SMOKING CAMPAIGN"
	To raise social awareness about hazards of smoking, a school
	decided to start 'No smoking' campaign. 10 students are asked to
	prepare campaign banners in the shape of a triangle. The vertices of
	one of the triangle are P($-3,4$), Q($3,4$) and R($-2,-1$).
	No smoking
	Based on the above information, answer the following questions.
(i)	The coordinates of centroid of Δ PQR are
	(a) $\left(\frac{2}{3}, \frac{7}{3}\right)$
	(b) $\left(\frac{1}{3}, \frac{1}{3}\right)$
	(c) $\left(\frac{-2}{3}, \frac{7}{3}\right)$
	(d) $\left(\frac{7}{3},\frac{2}{3}\right)$
(ii)	If S be the mid-point of line joining P and Q, then coordinates of S
	are
	(a) (4,0)
	(b) (2,0)
	(c) (0,4)
	(d) (0,2)
(iii)	If T be the mid-point of line joining R and Q, then coordinates of T
	are
	(a) $(\frac{1}{2}, \frac{1}{2})$

	(b)	$(\frac{3}{2},\frac{1}{2})$
	(c)	$(\frac{1}{2},\frac{3}{2})$
	(d)	None of these
(iv)	If U be	the mid-point of line joining R and P, then coordinates of U
	are	
	(a)	$(\frac{-5}{2},\frac{3}{2})$
	(b)	$(\frac{3}{2},\frac{-5}{2})$
	(c)	$(\frac{3}{2},\frac{5}{2})$
	(d)	$(\frac{5}{2},\frac{3}{2})$
(v)	The coo	ordinates of centroid of Δ STU are
	(2)	$(\frac{2}{7})$
	(a)	$(\frac{1}{3},\frac{1}{3})$
	(b)	$(\frac{1}{3},\frac{1}{3})$
	(c)	$(\frac{-2}{3},\frac{7}{3})$
	(d)	$(\frac{7}{3},\frac{2}{3})$
Q-4	RIDE	
	A person	is riding his bike on a straight road towards East from his
	college t	o city A and then to city B. At some point in between city A
	and city	B, he suddenly realises that there is not enough petrol for
	the jourr	ney. Also, there is no petrol pump on the road between these
	two citie	S.

	$\overbrace{\begin{array}{c} \hline \\ 0 \leftarrow \\ 2\sqrt{2} \text{ km} \end{array}}^{O(2, y)} \overbrace{\begin{array}{c} City A \end{array}}^{O(2, y)} \overbrace{\begin{array}{c} City B }} \overbrace{\begin{array}{c} City B \end{array}}^{O(2, y)} \overbrace{\begin{array}{c} City B }} \overbrace$
	K 6√2 km →
	Based on the above information, answer the following questions.
(i)	The value of y is equal to
	(a) 2
	(b) 3
	(c) 4
	(d) 5
(ii)	The value of x is equal to
	(a) 4
	(b) 5
	(c) 8
	(d) 7
(iii)	If M is any point exactly in between city A and city B, then
	coordinates of M are
	(a) (3,3)
	(b) (4,4)
	(c) (5,5)
	(d) (6,6)
(iv)	The ratio in which A divides the line segment joining the points
	O and M is
	(a) 1:2
	(b) 2:1

	Observe the above situation and answer the questions.		
	So that the construction can be understood clearly.		
Q-J	Ravi decided to construct a three dimensional model. The model of the hut has been shown below along with its front and side views.		
0.5	(d) None of these		
	(c) travel back to city A		
	(a) travel back to college (b) try his luck to move towards city B		
	AB), then what should be his decision?		
(v)	If the person analyses the petrol at the point M(the mid-point of		
	(d) 3:2		
	(c) 2:3		

(i)	Find the mid-point of the segment joining $H(1,4)$ and $G(4,4)$.[Refer		
	to front view]		
	(a)	$(\frac{5}{2}, 4)$	
	(b)	(2,4)	
	(c)	$(\frac{1}{2}, \frac{5}{2})$	
	(d)	(4,8)	
(ii)	What is the distance of point F from x-axis? [Refer to front view]		
	(a)	4	
	(b)	5	
	(c)	6	
	(d)	25	
(iii)	What is the distance between B and E? [Refer to side view]		
	(a)	$\sqrt{5}$	
	(b)	4	
	(c)	$\sqrt{41}$	
	(d)	9	
(iv)	If a point V(x, y) is equidistant from $F(2,5)$ and $E(7,5)$, then:		
	(a)	x + y=9	
	(b)	x - y = 0	
	(c)	2y-9=0	
	(d)	2x-9=0	
(v)	Find the	e coordinates of the point which divides the line segment	
	joining	A $(1,1)$ and B $(4,1)$ in the ratio 1:2 internally.[Refer to front	
	view]		
	(a)	(1,2)	
	(b)	(2,1)	
	(c)	(3,2)	
	(d)	(2,2)	
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)		
------	--		
Q-1	The distance of a point from the y axis is called		
	(abscissa, ordinate)		
Q-2	The distance between the two points is found by		
	formula.		
	(Mid-point / Distance)		
Q-3	If three points lie on the same straight line, they are termed		
	as points.(non-collinear/collinear)		
Q-4	The distance of the point P(2,3) from the x-axis is		
Q-5	The point (3,-1) lies in the quadrant of the coordinate		
	plane.		
0-6	Graph of the line x=a is a line parallel to the axis		
20			
Q-7	Abscissa is to the right of the origin and to the left		
	of the origin.(negative, positive)		
Q-8	The distance of the point P(-6,8) from the origin isunits.		
Q-9	The coordinates of a point on y- axis are		
Q-10	Any point on x-axis is of the form		
	SHORT ANSWER TYPE QUESTIONS		
Q-1	Find the value of x for which the distance between the points P(4,-		
	5) and $Q(12,x)$ is 10 units.		
Q-2	Find a point on x-axis which is equidistant from the points (7,6) and		
	(-3,4).		
Q-3	Find a point on y-axis which is equidistant from the points (-5,2) and		
	(9,-2).		
Q-4	Find a relation between x and y such that the point $P(x,y)$ is		
	equidistant from the points $A(2,5)$ and $B(-3,7)$.		

Q-5	If the points $A(4,3)$ and $B(x,5)$ are on the circle with the centre
	O(2,3), find the value of x.
0-6	In which ratio does the point $P(2,-5)$ divide the line segment joining
	$\Lambda(-2,5)$ and $B(4,-0)$ 2
	A(-5,5) and b(4,-5):
Q-7	Find the ratio in which the point $(x,1)$ divides the line segment
	joining the points $(-3,5)$ and $(2,-5)$. Also find the value of x.
Q-8	Find the coordinates of the point which divides the line segment
	joining the points $(4, -3)$ and $(8, 5)$ in the ratio 3:1.
Q-9	The coordinates of the mid-point of the line segment joining the
	points $(3p,4)$ and $(-2,2q)$ are $(5,p)$. Find the values of p and q.
Q-10	If the mid-points of the line segment joining the points A(3,4) and
	B(k,6) is P(x,y) and $x+y-10=0$, find the value of k.
	LONG ANSWER TYPE QUESTIONS
0-1	Show that the points $(5.6)(1.5)(2.1)$ and (6.2) are the vertices of a
	Square.
Q-2	Prove that the diagonals of a rectangle bisect each other and are
	equal.
Q-3	The mid-points of the sides of a triangle are (3,4), (4,6) and (5,7).
	Find the coordinates of vertices of the triangle.
0.4	
Q-4	Determine the ratio in which the line $2x + 3y - 5 = 0$ divides the
	line segment joining the points (8,-9) and (2,1). Also find the
	coordinates of the point of division.
Q-5	Find the coordinates of the point equidistant from three given points
	A(5,1), B(-3,-7) and C(7,-1).
Q-6	If a is the length of one of the sides of an equilateral triangle ABC,
	base BC lies on x-axis and vertex B is at the origin, find the
	coordinates of the vertices of the triangle.

Q-7	An equilateral triangle has one vertex at $(3,4)$ and another at $(-2,3)$.
	Find the coordinates of the third vertex.
Q-8	Find the length of the medians of the triangle whose vertices are
	(1,-1),(0,4) and (-5,3).
Q-9	If A(-2,1), B(a,0), C(4,b) and D(1,2) are the vertices of a
	parallelogram ABCD, find the values of a and b. Hence find the
	lengths of its sides.
Q-10	Show that the points A(a,a), B(-a,-a) and C(- $\sqrt{3}$ a, $\sqrt{3}$ a) are the
	vertices of an equilateral triangle.

CHAPTER-07

COORDINATE GEOMTERY

SOLUTION OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans-1	(b)3
Ans-2	(c)10
Ans-3	(b)8
Ans-4	(c)5√2
Ans-5	(b)-6,2
Ans-6	(b)± 4
Ans-7	(c)(-4,2)
Ans-8	(b)-12
Ans-9	(b)3,-9
Ans-10	(c)√ <u>34</u>
	SOLUTIONS TO CASE STUDIES/SOURCE BASED INTEGRATED
	QUESTIONS
Ans-1(i)	(d)(3,4) and (6,7)
(ii)	(c)(9,4) and (6,1)
(iii)	(b)3√2 units
(iv)	(b)6 units
(v)	(c)square
Ans-2(i)	(d)2 units
(ii)	(b)2 units

(iii)	(d)2√2 units
(iv)	(b)ABC forms an isosceles triangle.
(v)	(d)(√13 -√5) units
Ans-3(i)	(c) $\left(\frac{-2}{3}, \frac{7}{3}\right)$
(ii)	(d)(0,4)
(iii)	(c) $\left(\frac{1}{2}, \frac{3}{2}\right)$
(iv)	(a) $\left(\frac{-5}{2}, \frac{3}{2}\right)$
(v)	(c) $\left(\frac{-2}{3}, \frac{7}{3}\right)$
Ans-4(i)	(a)2
(ii)	(c)8
(iii)	(c)(5,5)
(iv)	(d)2:3
(v)	(b)try his luck to move towards city B
Ans-5(i)	$(a)(\frac{5}{2}, 4)$
(ii)	(b)5
(iii)	(c)√41
(iv)	(d)2x-9=0
(v)	(b)(2,1)
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN
	MCQs)
Ans-1	Abscissa

Ans-2	Distance
Ans-3	Collinear
Ans-4	2
Ans-5	Fourth
Ans-6	Y
Ans-7	Positive, negative
Ans-8	10
Ans-9	(0,y)
Ans-10	(x,0)
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans-1	Given the points $P(4,-5)$ and $Q(12,x)$ such that
	PQ=10 ,
	$\Rightarrow PQ^2 = 100$
	$(12-4)^2 + (x + 5)^2 = 100$
	$8^2 + (x + 5)^2 = 100$
	$(x + 5)^2 = 100-64 = 36 = 6^2$
	x + 5 = 6 or x + 5 = -6
	x = 1 or $x = -11$
Ans-2	Let $P(x,0)$ be a point on x-axis equidistant from the points $A(7,6)$ and
	B(-3,4).
	Then, PA=PB
	$\Rightarrow PA^2 = PB^2$
	$\Rightarrow (x-7)^2 + (0-6)^2 = (x+3)^2 + (0-4)^2$
	$\Rightarrow x^2 - 14x + 49 + 36 = x^2 + 6x + 9 + 16$

	⇒ -20x=-60
	⇒ x=3
	Hence, the required point is P(3,0).
Ans-3	Let $P(0,y)$ be a point on y-axis equidistant from the points $A(-5,2)$
	and B(9,-2).
	Then, PA=PB
	$\Rightarrow PA^2 = PB^2$
	$\Rightarrow (0+5)^2 + (y-2)^2 = (0-9)^2 + (y+2)^2$
	\Rightarrow 25+y ² -4y +4=81+y ² +4y+4
	⇒ -8y=56
	⇒ y=-7
	Hence, the required point is $P(0,-7)$.
Ans-4	As the point $P(x,y)$ is equidistant from the points $A(2,5)$ and $B(-3,7)$.
	So, PA=PB
	$\Rightarrow PA^2 = PB^2$
	$\Rightarrow (x-2)^2 + (y-5)^2 = (x+3)^2 + (y-7)^2$
	$\Rightarrow x^2 + 4 - 4x + y^2 + 25 - 10y = x^2 + 9 + 6x + y^2 + 49 - 14y$
	⇒ 10x-4y+29=0
	Hence it is the required relation between x and y.
Ans-5	As points $A(4,3)$ and $B(x,5)$ are on the circle,
	⇔ OA=OB
	$\Rightarrow OA^2 = OB^2$
	$\Rightarrow (2-4)^2 + (3-3)^2 = (2-x)^2 + (3-5)^2$
	$\Rightarrow 4+0 = (2-x)^2 + 4$
	$\Rightarrow (2-x)^2 = 0$
	⇒ 2-x=0
	x = 2
Ans-6	Let the point $P(2,-5)$ divide AB in the ratio k:1.
	$\frac{4k-3}{k+1} = 2$

	⇒ 4k-3 =2k+2
	$\Rightarrow 2k=5$
	\Rightarrow K= $\frac{5}{-}$
	2
	Hence, the required ratio is 5:2
Ans-7	Let the point $P(x,-1)$ divide the line segment AB joining the points
	A(-3,5) and B(2,-5) in the ratio k:1
	Then ,
	y-coordinate of P= $\frac{-5k+5}{k+1} = -1$
	⇒ -5k+5=-k-1
	⇒ -4k=-6
	\Rightarrow k = $\frac{3}{2}$
	Hence, the required ratio is 3:2
	Also ,
	$x = \frac{3 \times 2 + 2 \times (-3)}{3 + 2} = 0$
Ans-8	Let P(x,y) be the required point.
	Using section formula,
	$x = \frac{3 \times 8 + 1 \times 4}{3 + 1} = 7$, $y = \frac{3 \times 5 + 1 \times (-3)}{3 + 1} = 3$
	Hence, the required point is (7,3).
Ans-9	The coordinates of the mid-point of the line segment joining the
	points(3p,4) and (-2,2q) are
	$\left(\frac{3p-2}{2}, \frac{4+2q}{2}\right) = (5,p) \text{ or } \left(\frac{3p-2}{2}, q+2\right) = (5,p)$
	$\Rightarrow \frac{3p-2}{2} = 5 \text{ and } q+2=p$
	\Rightarrow 3p=10+2 and q=p-2
	Hence ,
	p = 4 and $q = 4 - 2 = 2$

Ans-10	The mid-point of the line-segment AB is
	$\left(\frac{3+k}{2},\frac{4+6}{2}\right) = (x,y)$
	$\Rightarrow X = \frac{3+k}{2}$ and y=5
	As x+y-10=0, so
	$\frac{3+k}{2}$ +5-10=0
	⇒ 3+k=10
	Hence , k=7
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans-1	Let A(5,6), B(1,5), C(2,1), D(6,2) be the given vertices.
	Then,
	$AB = \sqrt{(1-5)^2 + (5-6)^2} = \sqrt{16+1} = \sqrt{17}$
	BC= $\sqrt{(2-1)^2 + (1-5)^2} = \sqrt{1+16} = \sqrt{17}$
	$CD = \sqrt{(6-2)^2 + (2-1)^2} = \sqrt{16+1} = \sqrt{17}$
	$DA = \sqrt{(5-6)^2 + (6-2)^2} = \sqrt{1+16} = \sqrt{17}$
	Diagonal, AC= $\sqrt{(2-5)^2 + (1-6)^2} = \sqrt{9+25} = \sqrt{34}$
	Diagonal , BD= $\sqrt{(6-1)^2 + (2-5)^2} = \sqrt{25+9} = \sqrt{34}$
	Clearly, AB=BC=CD=DA
	\Rightarrow The four sides of the quadrilateral ABCD are equal.
	AC=BD
	\Rightarrow The two diagonals of quadrilateral ABCD are equal.
	Hence, the quadrilateral ABCD is a square.
Ans-2	Let ,vertices of the rectangle OABC
	be O(0,0), A(a,0), B(a,b) and
	C(0,b)
	Mid-point of diagonal OB
	$\left(\frac{0+a}{2},\frac{0+b}{2}\right) = \left(\frac{a}{2},\frac{b}{2}\right)$
	Mid-point of diagonal AC
	$\left(\frac{a+0}{2},\frac{0+b}{2}\right) = \left(\frac{a}{2},\frac{b}{2}\right)$

	⇒ The mid-point of both
	diagonals is the same. $G(0, b)$ $B(a, b)$
	Diagonal OB = $\sqrt{(a-0)^2 + (b-0)^2}$
	$=\sqrt{a^2+b^2}$
	Diagonal AC = $\sqrt{(a-0)^2 + (0-b)^2}$ =
	$\sqrt{a^2 + b^2}$
	\Rightarrow Diagonal OB = Diagonal AC $O(0, 0)$ $A(a, 0)$
	Hence, diagonals of a rectangle bisect each other and are
	equal.
Ans-3	Let A(x_1, y_1), A(x_2, y_2) and C(x_3, y_3) be the vertices of \triangle ABC, and
	D(3,4), $E(4,6)$ and $F(5,7)$ be the mid-points of sides BC, CA and AB
	respectively.
	As D is the mid-point of BC, so
	$\frac{x_2 + x_3}{2} = 3$ and $\frac{y_2 + y_3}{2} = 4$
	⇒ x ₂ +x ₃ =6(i)
	⇒ y ₂ +y ₃ =4(ii)
	As E is the mid-point of CA, so
	$\frac{x_1 + x_3}{2} = 4$ and $\frac{y_1 + y_3}{2} = 6$
	⇒ x ₁ +x ₃ =8(iii)
	\Rightarrow y ₂ +y ₃ =12(iv)
	As F is the mid-point of AB, so
	$\frac{x_1 + x_2}{2} = 5$ and $\frac{y_1 + y_2}{2} = 7$
	\Rightarrow x ₁ +x ₃ =10(v)
	\Rightarrow y ₂ +y ₃ =14(vi)
	Adding (i),(iii) and (v), we get
	$2(x_1 + x_2 + x_3) = 6 + 8 + 10$
	$\Rightarrow x_1 + x_2 + x_3 = 12 \dots (vii)$
	from (i) and (vii), $x_1=12-6 = 6$
	from (iii) and (vii), $x_2=12-8 = 4$
	from (v) and (vii), $x_3=12-10 = 2$

	Adding (ii), (iv) and (vi), we get
	$2(y_1 + y_2 + y_3) = 8 + 12 + 14$
	$\Rightarrow y_1 + y_2 + y_3 = 17 \dots (viii)$
	from (ii) and (viii), $y_1 = 17 - 8 = 9$
	from (iv) and (viii), $y_2=17-12 = 5$
	from (vi) and (viii), $y_3 = 17 - 14 = 3$
	Hence, three vertices of \triangle ABC are A(6,9), B(4,5), C(2,3).
Ans-4	Let the line $2x + 3y - 5 = 0$ divide the line segment joining A(8,-9) and B(2,1) in the ratio k:1. Then the coordinates of the point of
	ntersection P will be $\left(\frac{2k+8}{k+1}, \frac{k-9}{k+1}\right)$
	As the point P lies on the line $2x + 3y - 5 = 0$, so
	$2\left(\frac{2k+8}{k+1}\right) + 3\left(\frac{k-9}{k+1}\right) - 5 = 0$
	$\Rightarrow 4k + 16 + 3k - 27 - 5k - 5 = 0$
	$\Rightarrow 2k = 16$
	⇒ k=8
	Hence, the required ratio is 8:1.
	The coordinates of the point of division are
	$\left(\frac{2\times8+8}{8+1},\frac{8-9}{8+1}\right) = \left(\frac{8}{3},-\frac{1}{9}\right)$
Ans-5	Let $P(x, y)$ be the point equidistant from the three points $A(5,1)$, $B(-$
	3,-7) and C(7,-1). Then
	PA=PB=PC
	$\Rightarrow PA^2 + PB^2 + PC^2$
	Taking $PA^2 = PB^2$
	$\Rightarrow (x-5)^2 + (y-1)^2 = (x+3)^2 + (y+7)^2$
	$\Rightarrow x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 6x + 9 + y^2 + 14y + 49$
	⇒ -16x-16y =32
	$\Rightarrow x + y = -2 \dots (i)$

	Now taking,
	$PB^2 = PC^2$
	$\Rightarrow (x+3)^{2} + (y+7)^{2} = (x-7)^{2} + (y+1)^{2}$ $\Rightarrow x^{2} + 6x + 9 + y^{2} + 14y + 49 = x^{2} - 14x + 49 + y^{2} + 2y + 1$ $\Rightarrow 20x + 12y = -8$ $\Rightarrow 5x + 3y = -2 \dots (ii)$
	Multiplying (i) by 5 and then subtracting (ii), we get
	2y=-8
	\Rightarrow y=-4
	using value of y in (i), we get $x-4=-2$
	⇒ x=2
	Hence, the required point is $P(2,-4)$.
Ans-6	Let the coordinates of the vertices of equilateral triangle ABC be
	A(x,y), B(0,0) and C(a,0).
	AB=AC=BC=a (given)
	$\Rightarrow AB^2 = AC^2 = a^2$
	$\Rightarrow (x-0)^2 + (y-0)^2 = a^2$
	and $(x-a)^2+(y-0)^2 = a^2$
	$\Rightarrow x^2 + y^2 = a^2 \dots (i)$
	and $x^2 + a^2 - 2ax + y^2 = a^2$
	$\Rightarrow x^2 - 2ax + y^2 = 0$
	\Rightarrow a ² -2ax =0 {using equation (i)}
	\Rightarrow 2ax =a ² or x = $\frac{a}{2}$
	Putting this value of x in equation (i), we get
	$\frac{a^2}{4} + y^2 = a^2$ or $y^2 = \frac{3}{4}a^2$
	$\Rightarrow y = \pm \frac{\sqrt{3}}{2} a$

	Hence, the coordinates of the vertices of ΔABC are
	$A\left(\frac{a}{2}, \frac{\sqrt{3}}{2}a\right), B(0,0), C(a,0) \text{ OR } A\left(\frac{a}{2}, -\frac{\sqrt{3}}{2}a\right), B(0,0) C(a,0).$
Ans-7	Let A(x,y), B(3,4) and C(-2,3) are the three vertices of an equilateral triangle.
	BC=AB=AC
	BC= $\sqrt{(-2-3)^2 + (3-4)^2} = \sqrt{25+1} = \sqrt{26}$
	$AB = \sqrt{(x-3)^2 + (y-4)^2}$
	As AB =BC
	$\Rightarrow AB^2 = BC^2$
	\Rightarrow (x-3) ² +(y-4) ² = 26
	$\Rightarrow X^2 + y^2 - 6x - 8y - 1 = 0$ (i)
	$AC = \sqrt{(x+2)^2 + (y-3)^2}$
	As AC =BC
	\Rightarrow AC ² =BC ²
	$\Rightarrow (x+2)^2 + (y-3)^2 = 26$
	$\Rightarrow X^2 + y^2 + 4x - 6y - 13 = 0$ (ii)
	Subtracting (i) and (ii)
	10x+2y-12=0
	 ⇒ y=6-5x(iii) ⇒ substituting the value of y in
	$(x-3)^2 + (y-4)^2 = 26$
	$(x-3)^2 + (6-5x-4)^2 = 26$
	$\Rightarrow x^{2} + 9 - 6x + 4 + 25x^{2} - 20x - 26 = 0$ $\Rightarrow 26x^{2} - 26x - 13 = 0$
	$x = \frac{2 \pm \sqrt{12}}{4} = \frac{1 \pm \sqrt{3}}{2}$
	substituting the value of x in equation (iii)

	$= \sqrt{\left(\frac{-11}{2}\right)^2 + \left(\frac{3}{2}\right)^2}$
	$=\sqrt{\frac{130}{4}}$
	$=\frac{\sqrt{130}}{2}$
Ans-9	The diagonals of a parallelogram
	Bisect each other.
	Mid-point of AC = Mid-point of $D(1, 2)$ $C(4, b)$
	BD A(-2, 1) B(a, 0)
	$\left(\frac{-2+4}{2},\frac{1+b}{2}\right) = \left(\frac{a+1}{2},\frac{0+2}{2}\right)$
	$\Rightarrow \ \frac{a+1}{2} = \frac{2}{2} = 1$
	⇒ a=1
	and $\frac{1+b}{2} = \frac{2}{2} = 1$
	⇒ b=1
	using distance formula-
	$AB = \sqrt{(1+2)^2 + (0-1)^2} = \sqrt{9+1} = \sqrt{10}$
	BC = $\sqrt{(4-1)^2 + (1-0)^2} = \sqrt{9+1} = \sqrt{10}$
	The opposite sides of a parallelogram are equal.
	AB=CD = $\sqrt{10}$ units
	BC=AD = $\sqrt{10}$ units
Ans-10	The points A(a,a), B(-a,-a) and C(- $\sqrt{3}$ a, $\sqrt{3}$ a) are the vertices of
	ΔΑΒC.
	Therefore ,
	AB = $\sqrt{(-a-a)^2 + (-a-a)^2} = \sqrt{4a^2 + 4a^2} = \sqrt{8a^2} = 2\sqrt{2} a$

BC =
$$\sqrt{(-\sqrt{3}a + a)^2 + (\sqrt{3}a + a)^2} = \sqrt{a^2(1 - \sqrt{3})^2 + a^2(1 + \sqrt{3})^2}$$

= $a\sqrt{(1 - \sqrt{3})^2 + (1 + \sqrt{3})^2}$
= $a\sqrt{1 + 3 - 2\sqrt{3} + 1 + 3 + 2\sqrt{3}}$
= $a\sqrt{8}$
= $2\sqrt{2}a$
Clearly, AB = BC = AC = $2\sqrt{2}a$
Hence, Δ ABC is an equilateral triangle.

CHAPTER :08

INTRODUCTION TO TRIGONOMETRY

	COMPETENCY BASED QUESTIONS
Q1	In \triangle ABC, right-angled at B, AB = 5 cm and \angle ACB = 30° then the length of the side AC is
	(a) $5\sqrt{3}$ (b) $2\sqrt{3}$ (c) 10 cm. (d) none of these
Q2	9sec ² A- 9tan ² A=
	(a) 1 (b) 9 (c) 8 (d) 0
Q3	$\frac{1+\tan^2 A}{1+\cot^2 A} =$
	(a) $sec^2 A$ (b) -1 (c) $cot^2 A$ (d) $tan^2 A$
Q4	If $\cos A = \frac{24}{25}$, then the value of sinA is
	(a) $\frac{24}{25}$ (b) $\frac{24}{25}$ (c) 1 (d) none of these
Q 5	If sec $4A = cosec (A - 20^{\circ})$, where $4A$ is an acute angle, find the value of A_{c}
	(a)22 ⁰ (b) 25 ⁰ (c) 26 ⁰ (d) none of these
Q 6	In a right triangle ABC, right-angled at B, if tan A = 1, then the value of $2\sin A \cos A =$
	(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) none of these
Q 7	If sin $(A - B) = 1$ and $cos(A + B) = 1$, then the value of
	A and B, respectively are (a)45° and 15° (b) 30° and 15° (c) 45° and 30°
	(d) none of these
Q 8	The value of $sin60^{\circ}cos30^{\circ} - cos60^{\circ}sin30^{\circ}$ is
	(a)1 (b) –1 (c) 0 (d) none of these
Q 9	If sin $3A = \cos (A - 26^{\circ})$, where $3A$ is an acute
	angle, find the value of A.
	(a) 29 ⁰ (b) 30 ⁰ (c) 26 ⁰ (d) 36 ⁰
Q10	The value of 2 $\cos^2 60^0 \square 3\sin^2 45^0 \square 3\sin^2 30^0 \square 2 \cos^2 90^0$ is
	(a)1 (b) 5 (c) 5/4 (d) none of these

Q11	sin A = cosA is true when A =
	(a) 0° (b) 30° (c) 45° (d) any angle
	CASE STUDIES / SOUDCE BASED INTEGDATED OUESTIONS
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q 1	Hide And Seek
	Three friends- Megha, Kristi and Joya are playing hide and seek in a park.
	Megha and Kristi hide in the shrubs and Joya have to find both of them.If
	Position of three friends are at A,B and C respectively as shown in the the figure and forms a right angled triangle such that AB=9m, BC = $3\sqrt{3}$ m and $\angle B = 90^{\circ}$, then answer the following questions:
(i)	The measure of $\angle A$ is
	(a) 30° (b) 45° (c) 60° (d)none of these
(ii)	The measure of \angle C is
	(a)30 ⁰ (b)45 ⁰ (c)60 ⁰ (d)none of these
(iii)	The length of AC is
	(a)2√3m (b) √3m (c) 4√3m (d) 6√3 m
(iv)	Cos2A =
	(a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$
(v)	$Sin(\frac{c}{2})=$
	(a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$

Q2	Two Flights
	A 1.2 km 0 3 km B
	Two airplanes leave an airport, one after the other. After moving on runway, one flies due North and other flies due south. The speed of two airplanes are 400km/hr. and 500km/hr. respectively. Considering PQ as runway and A and B are any two points in the path followed by two planes, then answer the following questions:
(i)	Find $\tan \theta$, $\angle APQ = \theta$ (a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$
(ii)	Find cotB
	(a) $\frac{3}{4}$ (b) $\frac{15}{4}$ (c) $\frac{3}{8}$ (d) $\frac{15}{8}$
(iii)	Find tanA
	(a) 2 (b) $\sqrt{2}$ (c) $\frac{4}{3}$ (d) $\frac{2}{\sqrt{3}}$
(iv)	Find secA
	(a) 1 (b) $\frac{2}{3}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$
(v)	Find cosecB
	(a) $\frac{17}{8}$ (b) $\frac{8}{17}$ (c) $\frac{12}{5}$ (d) $\frac{5}{12}$

Q3	Bird House
	$P_{\frac{13 \text{ cm}}{R}} = \frac{13 \text{ cm}}{12 \text{ cm}} Q$
	Naveen-a student of class X, has to make a project on 'Introduction to trigonometry'. He decides to make a bird house which is triangular in shape. He uses cardboard to make the bird house as shown in the figure. Considering the front side of bird house as right angled triangle PQR, $\angle R = 90^{\circ}$, answer the following questions:
(i)	If $\angle PQR = \theta$, then $\cos\theta =$
	(a) $\frac{12}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{13}$ (d) $\frac{13}{12}$
(ii)	If $\angle PQR = \theta$, then $\sec\theta =$
	(a) $\frac{12}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{13}$ (d) $\frac{13}{12}$
(iii)	The value of $\frac{tan\theta}{1+tan^2\theta} =$
	(a) $\frac{12}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{13}$ (d) $\frac{13}{12}$
(iv)	The value of $cot^2\theta$ - $cosec^2\theta$ =
	(a) 0 (b) -1(c) 1 (d) 2
(V)	The value of $sin^2\theta + cos^2\theta =$
Q4	Sandwich making
	B cm B cm M 4.[3 cm L
	Neeta's brother is feeling so hungry and so thought to eat something. He looked in to fridge and found some bread pieces. He decided to make a sandwich. He cut the piece of bread diagonally and found that it forms a right angled triangle, with sides 4cm, $4\sqrt{3}$ cm and 8cm.

	On the basis of above information, answer the following questions:
(i)	Find $\angle M =$
	(a) 30 ⁰ (b) 60 ⁰ (c) 45 ⁰ (d)None of these
(ii)	Find $\angle K =$
	(a) 30 ⁰ (b) 60 ⁰ (c) 45 ⁰ (d)None of these
(iii)	Find the value of tan M=
	(a) 1 (b) $\sqrt{3}$ (c) $\frac{4}{3}$ (d) $\frac{1}{\sqrt{3}}$
(iv)	The value of $\frac{tan^2\theta-1}{1+tan^2\theta} = \dots$ if $\theta = 45^0$
	(a) 1 (b) -1 (c) 0 (d) 2
(V)	$sec^{2}M - 1 =$
	(a) tanM (b) tan2M (c) tan ² M (d) 2
	OBJECTIVE TYPE QUESTIONS
Q 1	The minimum value of $2\sin^2\theta + 3\cos^2\theta$
(i)	0
(ii)	3
(iii)	2
(iv)	1
Q 2	$\tan^2 A + \cot^2 A = \dots$
(i)	sec ² A cosec ² A – 2
(ii)	sec ² A cosec ² A – 1
(iii)	sec ² A cosec ² A
(iv)	1- sec ² A cosec ² A
Q3	If sin A = $3/4$, value of cos A and tan A
(i)	√7/4, 3/√7
(ii)	0,0
(iii)	1/4, 1
(iv)	1,0

	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	Trigonometry is the study of relationships between the and
Q 2	$\frac{\text{Side Opposite to } \angle A}{\text{Side adjacent to } \angle A} = \dots$
Q 3	$\frac{\text{Side adjacent to } \angle A}{\text{hypotenuse}} = \dots$
Q 4	$2\sin^2 45^0 = \dots$
Q 5	If triangle ABC , $\angle C = 90^{\circ}$ then value of $\cos(A+B)=$
Q 6	In a right angled triangle the side opposite to right angle is called
Q 7	Sec ² 60°-1=
Q 8	Write the maximum value of $\sin\theta$ =
Q 9	In a right angled triangle ABC right angled at B. If AB is opposite side, BC is adjacent side and AC is hypotenuse. Find the trigonometric ratios?
Q 10	In a right angled triangle ABC right angled at B. If AB is opposite side, BC is adjacent side and AC is hypotenuse. Find the trigonometric ratios?
	SHORT ANSWER TYPE QUESTIONS
Q 1	If $\tan \theta + \cot \theta = 5$, find the value of $\tan 2\theta + \cot \theta$
Q 2	If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of $\angle A$
Q 3	If tan $a = \sqrt{3}$ and tan $\beta = 1/\sqrt{3}$, $0 < a$, $\beta < 90^{\circ}$, find the value of cot $(a + \beta)$.
Q 4	If sin θ – cos θ = 0, find the value of sin4 θ + cos4 θ
Q 5	If sec θ + tan θ = 7, then evaluate sec θ – tan θ .
Q6	Evaluate: $\frac{1-cot^2 \ 45^0}{1+sin^2 \ 90^0} =$
Q 7	If cosec $\theta = 5/4$, find the value of cot θ .
Q 8	What happens to value of cos when increases from 0° to 90°?
Q9	Evaluate: tan 15° . tan 25° , tan 60° . tan 65° . tan 75° – tan 30°
Q10	Express cot 75° + cosec 75° in terms of trigonometric ratios of angles between 0° and 30°.
	LONG ANSWER TYPE QUESTIONS
Q 1	If $x = p \sec \theta + q \tan \theta$ and $y = p \tan \theta + q \sec \theta$, then prove that $x^2 - y^2 = p^2 - q^2$.

Q 2	Prove the following identity:
	$\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = 1 - \sin \theta \cdot \cos \theta$
Q 3	If $x = a \cos \theta - b \sin \theta$ and $y = a \sin \theta + b \cos \theta$, then prove that $a^2 + b^2 = x^2 + y^2$
Q 4	If $\cos x = \cos 40^\circ$. $\sin 50^\circ + \sin 40^\circ$. $\cos 50^\circ$, then find the value of x.
Q5	If sin $\theta = 1/2$, then show that 3 cos $\theta - 4 \cos^3 \theta = 0$
Q6	If 5 sin θ = 4, prove that $\frac{1}{\cos \theta} + \frac{1}{\cot \theta} = 3$
Q7	Evaluate:
	$\sin(50^\circ+\theta)-\cos(40^\circ-\theta)$
	sin40°. cosec 40°
	tan 1°.tan 40°. tan 50°. tan 89°
	$+\frac{4(\cos^2 29^\circ + \cos^2 61^\circ)}{4(\cos^2 29^\circ + \cos^2 61^\circ)}$
Q8	$\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = \frac{2}{2\sin^2\theta - 1} , \text{ prove it.}$
Q9	If $\tan \theta = ab$, prove that
	$a\sin\theta - b\cos\theta$ $a^2 - b^2$
	$a\sin\theta + b\cos\theta$ equals to $\frac{1}{a^2 + b^2}$
Q10	Prove the identity: (sec A – cos A). (cot A + tan A) = tan A . sec A

CHAPTER :08

INTRODUCTION TO TRIGONOMETRY

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Q 1	10cm
Q 2	9
Q 3	tan ² A
Q 4	None of these
Q 5	A= 22 ⁰
Q 6	1
Q 7	None of these
Q 8	0
Q 9	$A = 29^{0}$
Q 10	5/4
Q 11	$A = 45^{0}$
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q1	Hide and seek (i) angle A = 30° (ii) angle C = 60° (iii) AC = $6\sqrt{3}$ m
	(iv) cos 2A = $\frac{1}{2}$ because angle A = 30° and cos 2A= cos (2X30°) = cos $60^{\circ} = \frac{1}{2}$
	$(v)\sin(C/2) = \sin 30^0 = 1/2$
Q2	Two Flights (i) $tan\theta = 3/4$ (ii) $cotB = 15/8$ (iii) $tanA = 4/3$
	(iv) $tan^2A + 1 = sec^2 A$ therefore $secA = 5/3$
	(v)cosec B = $\sqrt{cot^2B + 1} = 17/8$
Q3	Bird House (i) PR = 5cm therefore $\cos\theta = 12/13$ (ii) $\sec\theta = 13/12$ (iii) $\tan\theta = 5/12$ The value of $\frac{tan\theta}{1+tan^2\theta} = 60/169$
	(iv) $\cot\theta = 12/5$, $\csc\theta = 13/5$. The value of $\cot^2\theta - \csc^2\theta = -1$
	$(v)\sin^2\theta + \cos^2\theta = 1$ (using identity)

	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS
Q1	Let $x = 2\sin^2\theta + 3\cos^2\theta$ $\Rightarrow x = 2\sin^2\theta + 2\cos^2\theta + \cos^2\theta$ $\Rightarrow x = 2(\sin^2\theta + \cos^2\theta) + \cos^2\theta$ $\Rightarrow x = 2 + \cos^2\theta$ [since $\sin^2\theta + \cos^2\theta = 1$] Therefore x will be the minimum when $\cos\theta = 0$. i.e. minimum value of x will 2
Q2	Solution: $\tan^{2} A + \cot^{2} A = \sec^{2} A \csc^{2} A - 2$ L.H.S. $= \tan^{2} A + \cot^{2} A$ $= \frac{\sin^{2} A}{\cos^{2} A} + \frac{\cos^{2} A}{\sin^{2} A}$ $= \frac{\sin^{4} A + \cos^{4} A}{\sin^{2} A \cos^{2} A}$ $= \frac{(\sin^{2} A + \cos^{2} A)^{2} - 2\sin^{2} A \cos^{2} A}{\sin^{2} A \cos^{2} A}$
	$= \frac{(1)^{2} - 2\sin^{2} A \cos^{2} A}{\sin^{2} A \cos^{2} A}$ = $\frac{1 - 2\sin^{2} A \cos^{2} A}{\sin^{2} A \cos^{2} A}$ = $\frac{1}{\sin^{2} A \cos^{2} A} - \frac{2\sin^{2} A \cos^{2} A}{\sin^{2} A \cos^{2} A}$ = $\csc^{2} A \sec^{2} A - 2 = \sec^{2} A \csc^{2} A - 2$ = R.H.S.
Q3	If sin A = 3/4, calculate cos A and tan A. Solution: Given: sin A = $\frac{3}{4} = \frac{BC}{AC}$ Let BC = 3k and AC = 4k Then by Pythagoras' Theorem, $AB^2 = AC^2 - BC^2$ $= (4k)^2 - (3k)^2 A$ $= 16k^2 - 9k^2 = 7k^2$ $\Rightarrow AB = k\sqrt{7}$ $\therefore \cos A = \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$ and $\tan A = \frac{BC}{AB} = \frac{3k}{\sqrt{7}k} = \frac{3}{\sqrt{7}}$

	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q1	Sides and angles
Q2	tan A
Q3	Cos A
Q4	1
Q5	0
Q6	hypotenuse
Q7	3
Q8	1
Q9	cosecA
Q10	Sec A
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Q1	$\begin{array}{l} \tan \theta + \cot \theta = 5 \dots \text{ (Given)} \\ \tan^2 \theta + \cot^2 \theta + 2 \tan \theta \cot \theta = 25 \dots \text{ [Squaring both sides} \\ \tan^2 \theta + \cot^2 \theta + 2 = 25 \\ \therefore \tan^2 \theta + \cot^2 \theta = 23 \end{array}$
Q2	sec 2A = cosec (A - 27°) cosec(90° - 2A) = cosec(A - 27°)[: sec θ = cosec (90° - θ) 90° - 2A = A - 27° 90° + 27° = 2A + A \Rightarrow 3A = 117° $\therefore \angle A = 117^{0}/3 = 39^{\circ}$
Q3	tan $a = \sqrt{3} = \tan 60^{\circ}$ (i) tan $\beta = 1/\sqrt{3} = \tan 30^{\circ}$ (ii) Solving (i) & (ii), $a = 60^{\circ}$ and $\beta = 30^{\circ}$ $\therefore \cot (a + \beta) = \cot (60^{\circ} + 30^{\circ}) = \cot 90^{\circ} = 0$
Q4	$\sin \theta - \cos \theta = 0 = \sin \theta = \cos \theta$ $\Rightarrow \sin \theta \cos \theta = 1 \Rightarrow \tan \theta = 1 \Rightarrow \theta = 45^{\circ}$ Now, $\sin^{4}\theta + \cos^{4}\theta$ $= \sin^{4} 45^{\circ} + \cos^{4} 45^{\circ}$ $= (1/\sqrt{2})^{4} + (1/\sqrt{2})^{4} = 1/4 + 1/4 = 2/4 = 1/2$
Q5	We know that, $\sec^2\theta - \tan^2\theta = 1$ $(\sec \theta + \tan \theta) (\sec \theta - \tan \theta) = 1$ $(7) (\sec \theta - \tan \theta) = 1 \dots [\sec \theta + \tan \theta = 7; (Given))$ $\therefore \sec \theta - \tan \theta = 1/7$

Q6	Evaluate: $\frac{1-\cot^2 \ 45^0}{1+\sin^2 \ 90^0} = \dots$ answer = 0
Q7	We know that, $\cot^2\theta = \csc^2\theta - 1$ $\cot^2\theta = 9/16 \therefore \cot \theta = 3/4$
Q8	$\cos 0^\circ = 1$, $\cos 90^\circ = 0$ When θ increases from 0° to 90°, the value of $\cos \theta$ decreases from 1 to 0.
Q9	tan 15°. tan 25°, tan 60°. tan 65°. tan 75° - tan 30° = tan(90° - 75°) tan(90° - 65°). 3-√. tan 65°. tan 75° - 13√ = cot 75°. cot 65°. $\sqrt{3}$. $\frac{1}{\cot 65°} \cdot \frac{1}{\cot 75°} - \frac{1}{\sqrt{3}}$ = $\sqrt{3} - \frac{1}{\sqrt{3}}$ [: tan(90°-A) = cot A tan B = $\frac{1}{\cot B}$ = $\frac{3-1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
Q10	$\cot 75^{\circ} + \csc 75^{\circ}$ = $\cot(90^{\circ} - 15^{\circ}) + \csc(90^{\circ} - 15^{\circ})$ = $\tan 15^{\circ} + \sec 15^{\circ} \dots [\cot(90^{\circ} - A)] = \tan A$ $\csc(90^{\circ} - A) = \sec A$
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Q1	L.H.S. = $x^2 - y^2$ = $(p \sec \theta + q \tan \theta)^2 - (p \tan \theta + q \sec \theta)^2$ = $p^2 \sec \theta + q^2 \tan^2 \theta + 2 pq \sec^2 \tan^2 - (p^2 \tan^2 \theta + q^2 \sec^2 \theta + 2pq \sec \theta \tan \theta)^2$ = $p^2 \sec \theta + 2 \tan^2 \theta + 2pq \sec \theta \tan \theta - p^2 \tan^2 \theta - q^2 \sec \theta - 2pq \sec \theta \tan \theta$ = $p^2(\sec^2 \theta - \tan^2 \theta) - q^2(\sec^2 \theta - \tan^2 \theta) =$ = $p^2 - q^2 \dots [\sec^2 \theta - \tan^2 \theta = 1]^2$ = R.H.S.
Q2	L.H.S. = $\frac{\sin^{3} \theta + \cos^{3} \theta}{\sin \theta + \cos \theta}$ = $\frac{(\sin \theta + \cos \theta)(\sin^{2} \theta + \cos^{2} \theta - \sin \theta \cos \theta)}{(\sin \theta + \cos \theta)}$ [:: $a^{3} + b^{3} = (a+b)(a^{2} + b^{2} - ab)$ = $1 - \sin \theta \cos \theta = $ R.H.S[:: $\sin^{2} \theta + \cos^{2} \theta = 1$
Q3	$\begin{array}{l} \text{R.H.S.} = x^2 + y^2 \\ = (a \cos \theta - b \sin \theta)^2 + (a \sin \theta + b \cos \theta)^2 \\ = a^2 \cos^2 \theta + b^2 \sin^2 \theta - 2ab \cos \theta \sin \theta + a^2 \sin^2 \theta + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta \\ = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) \\ = a^2 + b^2 = \text{L.H.S.} \dots [\because \cos^2 \theta + \sin^2 \theta = 1 \end{array}$
Q4	$cos x = cos 40^{\circ} sin 50^{\circ} + sin 40^{\circ} cos 50^{\circ} cos x = cos 40^{\circ} sin(90^{\circ} - 40^{\circ}) + sin 40^{\circ}.cos(90^{\circ} - 40^{\circ}) cos x = cos2 40^{\circ} + sin2 40^{\circ} cos x = 1[:: cos2 A + sin2 A = 1 cos x = cos 0^{\circ} \Rightarrow x = 0^{\circ}$

Q5
$$\begin{split} \sin \theta &= \sin 30^{\circ} \Rightarrow \theta = 30^{\circ} \\ \text{L.H.S} &= 3 \cos \theta - 4 \cos^{3} \theta \\ &= 3 \cos 30^{\circ} - 4 \cos^{3} (30^{\circ}) \\ &= 3 \left(\frac{\sqrt{3}}{2}\right) - 4 \left(\frac{\sqrt{3}}{2}\right)^{3} = \frac{3\sqrt{3}}{2} - 4 \left(\frac{3\sqrt{3}}{8}\right) \\ &= \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 0 = \text{R.H.S.} \end{split}$$
Q6
$$\begin{split} \text{Given: } 5 \sin \theta &= 4 \\ \therefore & \sin \theta = \frac{4}{5} \\ & \frac{P}{H} = \frac{4}{5} \\ \text{Here, } P = 4\text{K, } \text{H} = 5\text{K} \\ \text{In rt. } \Delta \text{ABC,} \\ P^{2} + B^{2} = H^{2} \\ \text{In rt. } \Delta \text{ABC,} \\ P^{2} + B^{2} = (5\text{K})^{2} \\ B^{2} = 25\text{K}^{2} - 16\text{K}^{2} = 9\text{K}^{2} \\ B^{2} = 25\text{K}^{2} - 16\text{K}^{2} = 9\text{K}^{2} \\ B = +3\text{K} \\ \text{in} \left(\frac{1}{\cos \theta} = \frac{1}{B} = \frac{5\text{K}}{3\text{K}} = \frac{5}{3} \\ \tan \theta = \frac{P}{B} = \frac{4\text{K}}{3\text{K}} = \frac{4}{3} \\ \text{L.H.S.} &= \frac{1}{\cos \theta} + \frac{1}{\cot \theta} \\ &= \sec \theta + \tan \theta \\ &= \frac{5}{3} + \frac{4}{3} = \frac{9}{3} = 3 = \text{R.H.S.} \\ & \text{...(Hence proved)} \end{split}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbb{Q}^{7} & \frac{\sin(50^{\circ} + \theta) - \cos(40^{\circ} - \theta)}{\sin 40^{\circ} \cdot \cos e 40^{\circ}} \\ & \frac{\tan 1^{\circ} \cdot \tan 40^{\circ} \cdot \tan 50^{\circ} \cdot \tan 89^{\circ}}{4(\cos^{2} 29^{\circ} + \cos^{2} 61^{\circ})} \\ = & \frac{\sin[90^{\circ} - (40^{\circ} - \theta)] - \cos(40^{\circ} - \theta)}{\sin 40^{\circ} \cdot \csc 40^{\circ}} \\ & \frac{\tan 1^{\circ} \cdot \tan 40^{\circ} \tan(90^{\circ} - 40^{\circ}) \tan(90^{\circ} - 1^{\circ})}{4(\cos^{2} 29^{\circ} + \cos^{2} (90^{\circ} - 29^{\circ}))} \\ & & - \left[\frac{50^{\circ} + \theta}{90^{\circ} - 40^{\circ} + \theta} \right] \\ = & 90^{\circ} - 40^{\circ} + \theta \\ = & 90^{\circ} - (40^{\circ} - \theta) \\ & = & \frac{\cos(40^{\circ} - \theta) - \cos(40^{\circ} - \theta)}{\sin 40^{\circ} \cdot \csc 40^{\circ}} \\ & & + & \frac{\frac{1}{\cot 1^{\circ}} \times \frac{1}{\cot 40^{\circ}} \cot 40^{\circ} \cot 1^{\circ}}{4[\cos^{2} 29^{\circ} + \sin^{2} 29^{\circ}]} \\ & & = & 0 + \frac{1}{4(1)} = \frac{1}{4} \\ & & & - & \left[\frac{5 \sin(90^{\circ} - A) = \cos A}{\tan(90^{\circ} - A) = \cot A} \\ & & & \tan A = \frac{1}{\cot A} \\ & & & \tan A = \frac{1}{\cot A} \\ & & & \sin^{2}A + \cos^{2}A = 1 \end{array} \right] \\ \hline \hline & & & \left[\frac{(\sin \theta - \cos \theta)^{2} + (\sin \theta + \cos \theta)}{(\sin \theta + \cos \theta)^{2} + (\sin \theta + \cos \theta)^{2}} \\ & & & & \left[\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} + \frac{\sin \theta - \cos \theta}{\sin \theta - \cos \theta} \\ & & & & = & \frac{(\sin \theta - \cos \theta)^{2} + (\sin \theta + \cos \theta)^{2}}{(\sin \theta + \cos \theta)(\sin \theta - \cos \theta)} \\ & & & & = & \frac{1}{\cos^{2}\theta + 2\sin \theta \cos \theta} \\ & & & & & = & \frac{1}{\sin^{2}\theta - (1 - \sin^{2}\theta)} = \frac{2}{\sin^{2}\theta - 1 + \sin^{2}\theta} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ \end{array}$$

Q9	Solution:
	$I I I S = a \sin \theta - b \cos \theta$
	$L.H.S. = a\sin\theta + b\cos\theta$
	$a\sin\theta \ b\cos\theta$
	$\cos\theta = \cos\theta = a \tan\theta - b$
	$= a\sin\theta + b\cos\theta = a\tan\theta + b$
	<u>cosθ</u> cosθ
	[Dividing num. and deno. by $\cos \theta$
	$a\left(\frac{a}{b}\right) - b$
	$= \frac{(b)}{a\left(\frac{a}{b}\right)+b} \qquad \dots [\because \tan \theta = \frac{a}{b} \dots [Given]$
	$\frac{a^2}{b} - b = \frac{a^2 - b^2}{b} = a^2 - b^2$
	$= \frac{b}{a^2 + b} = \frac{b}{a^2 + b^2} = \frac{a - b}{a^2 + b^2}$
	= R.H.S. b
Q10	Solution:
-	L.H.S.= (sec A $-$ cos A) (cot A $+$ tan A)
	$= \left(\frac{1}{\cos A} - \cos A\right) \left(\frac{\cos A}{\sin A} + \frac{\sin A}{\cos A}\right)$
	$= \left(\frac{1-\cos^2 A}{\cos A}\right) \left(\frac{\cos^2 A + \sin^2 A}{\sin A \cos A}\right)$
	$= \frac{\sin^2 A}{\cos A} \times \frac{1}{\sin A \cos A} = \frac{\sin A}{\cos A} \times \frac{1}{\cos A}$
	$\dots [\because \cos^2 A + \sin^2 A = 1]$
	$= \tan A \cdot \sec A = R.H.S.$

CHAPTER:09

SOME APPLICATIONS OF TRIGONOMETRY

	COMPETENCY BASED QUESTIONS					
Q1	A pole 6 m high casts a shadow $2\sqrt{3}$ m long on the ground, then the					
	Sun's elevation is –					
	(1) 600	(B) 15º	(C) 300	(D)	000	
	(A) 00	(D) 45	(C) 50	(D)	50	
Q2	If the length of the shadow of a tower is increasing, then the angle of					
	elevation o	f the sun -				
	(A) is also i	increasing	(B) is de	creasing	(C) remains unaffected	
	(D) Don't have any relation with length of shadow					
Q3	The angle of elevation of the top of a tower is 30°. If the height of the					
	tower is do	ubled, then t	he angle of	elevation	of its top will	
	(A) also ge	t doubled			(B) will get halved	
	(C) will be	less than 60	degree		(D) None of these	
Q4	If the height of a tower and the distance of the point of observation					
	from its foot, both, are increased by 10%, then the angle of elevation of					
	its top -					
	(A) increases (B) decreases					
	(C) remains	s unchanged			(D) have no relation.	
Q5	A ladder 15 metres long just reaches the top of a vertical wall. If the					
	ladder makes an angle of 60° with the wall, then the height of the wall					
	will be -					
	(A) 7.5m	(B) 7.7	'n (C) 8.5m	(D) 8.8m	
Q6	An observe	r 1.5 metres	tall is 20.5	metres av	way from a tower 22	
	metres high. Determine the angle of elevation of the top of the tower					
	from the ey	ve of the obse	erver.			
	(A) 30°	(B) 45 [.]	° (C) 60°	(D) 90°	
Q7	If a man st	anding on a p	platform 3 r	netres ab	ove the surface of a lake	
	observes a	cloud and its	reflection i	n the lake	e, then the angle of	
	elevation o	f the cloud is	-			
	(A) equal to	o the angle o	f depressio	n of its ref	lection.	
	(B) double to the angle of depression of its reflection					

	(C) not equal to the angle of depression of its reflection					
	(D) information insufficient					
Q8	If two towers of height h1 and h2 subtend angles of 60° and 30°					
	respectively at the midpoint of the line joining their feet, then the value					
	of h1: h2 is -					
	(A) 1:3	(B) 1:2	(C) 2:1	(D) 3:	1	
Q9	The angle of elevation of the top of a tower 30 m high from the foot of					
	another tower in the same plane is 60°, then the distance between the					
	two towers is:					
	(A) 10√3 m	(B) 15√3	6 m (C) 1	l2√3 m	(D) 36 m	
Q10	There are two windows in a house. A window of the house is at a					
	height of 1.5 r	n above the	ground and th	e other wind	ow is 3 m	
	vertically abov	ve the lower w	vindow. Ram a	and Shyam a	re sitting inside	
	the two windo	ws. At an ins	tant, the angle	e of elevation	of a balloon from	
	these windows	s are observe	d as 45° and 3	30° respectiv	ely. Find the	
	height of the balloon from the ground.					
	(A) 7.598m	(B) 8.269	m (C)	7.269m	(D) 8.598 m	
	CASE STU	DIES/ SOU	RCE BASED I	NTEGRATED	QUESTIONS	
Q1	In a village, gi	roup of peopl	e complained	for an electri	c fault in their	
	area. On their complained, an electrician reached village to repair an					
	electric fault on a pole of height 5m. She needs to reach a point 1.3m					
	below the top of the pole to undertake the repair work (see the					
	adjoining figure). She used ladder, inclined at an angle of q to the					
	horizontal suc	h that $\cos\theta =$	0.5, to reach	the required	position.	
(i)	The angle of elevation θ is -					
		(1) 200	() 450			
	(a) 60°	(b) 30°	(C) 45°	(a) 90	J 0	
(ii)	The length BD	is -				
	(a) 3m (h) 3 5m	(c) 3.7m	(d)4m		
		J) 5.511	(C) 5.711	(u)411		
(iii)	The length of	the ladder (ta	ake √3 = 1.73) is -		
	(a) 4 m	(b) 4.3 m	(c) 4.2 m	(d) 4.28	m	

(iv)	How far from the foot of the pole should she place the foot of the						
	ladder?						
		(1) 2					
	(a) 2 m	(b) 2	.14 m	(c) 2.2 m	(d) 2.28 m		
(v)	If the heigh	nt of pole and	distance	BD is doubled,	then what will be the		
	length of the ladder?						
					()) 0.00		
	(a) 8 m	(b) 8.6	m	(c) 8.56 m	(d) 8.28m		
Q2	A group of	students of cl	ass X visi	ted India Gate	on an education trip.		
	The teacher and students had interest in history as well. The teacher						
	narrated th	at India Gate	, official n	ame Delhi Merr	norial, originally called		
	All-India W	ar Memorial,	monumen	tal sandstone a	rch in New Delhi,		
	dedicated t	o the troops o	of British I	India who died	in wars fought		
	between 19	914 and 1919	.The teach	ner also said th	at India Gate, which is		
	located at t	he eastern er	nd of the F	Rajpath (formei	ly called the		
	Kingsway), is about 138 feet (42 metres) in height.						
(i)	What is the	e angle of elev	ation if th	iey are standing	g at a distance of 42m		
	away from	the monumer	nt?				
	a) 30°	b) 45°	c) (50°	d) 0°		
()							
(11)	I ney want to see the tower at an angle of 60°. So, they want to know						
	the distanc	e where they	should sta	and and hence	find the distance.		
	a) 25.24 m	b) 20).12 m	c) 42 m	d) 24.64m		
()							
(111)	If the altitu	ide of the Sun	is at 60°	, then the heigi	nt of the vertical tower		
	that will ca	st a shadow o	f length 2	0 m is –			
	a) 20√3 m	b) 20/	′√3 m	c) 15/√3 r	n d) 15√3 m		
	The vetice of		for used and	d :4 :-	1.1. The engls of		
(17)		r the length of	r a rod an	d its shadow is	1:1. The angle of		
	elevation o	t the Sun is -					
	a) 30°	b)45°	c) 60°	d) 90°			

(v)	The angle formed by the line of sight with the horizontal when the					
	object viewed is below the horizontal level is –					
	a) corresponding angle b) angle of elevation					
	c) angle of depression d) complete angle					
Q3	A Satellite flying at height h is watching the top of the two tallest					
	mountains in Uttarakhand and Karnataka, them being Nanda Devi					
	(height 7,816m) and Mullayanagiri (height 1,930 m). The angles of					
	depression from the satellite, to the top of Nanda Devi and					
	Mullayanagiri are 30° and 60° respectively. If the distance between the					
	peaks of two mountains is 1937 km , and the satellite is vertically					
	above the midpoint of the distance between the two mountains.					
(i)	The distance of the satellite from the top of Nanda Devi is –					
	a) 1139.4 km b) 577.52 km c) 1937 km d) 1025.36 km					
(ii)	The distance of the satellite from the top of Mullayanagiri is –					
	a) 1139.4km b) 577.52 km c) 1937 km d) 1025.36 km					
(iii)	The distance of the satellite from the ground is –					
	a) 1139.4 km b) 577.52 km c) 1937 km d) 1025.36 km					
(iv)	What is the angle of elevation if a man is standing at a distance of					
	7816m from Nanda Devi?					
	a) 30° b) 45° c) 60° d) 0°					
(V)	If a mile stone very far away from, makes 45 to the top of					
	Mulianyangiri montain . So, find the distance of this mile stone form					
	the mountain.					
	a) 1118.327 km b) 566.976 km c) 1937 km d) 1025.36 km					
Q4	Radio towers are used for transmitting a range of communication					
	services including radio and television. The tower will either act as an					
	antenna itself or support one or more antennas on its structure,					

	including microwave dishes. They are among the tallest human-made					
	structures. There are 2 main types: guyed and self-supporting					
	structures.					
	On a similar concept, a radio station tower was built in two sections A					
	and ${\sf B}$. Tower is supported by wires from a point ${\sf O}$. Distance between					
	the base of the tower and point O is 36 m. From point O , the angle of					
	elevation of the top of section B is 30° and the angle of elevation of the					
	top of section A is 45°.					
	On the basis of the above information, answer the following questions:					
(i)	What is the height of the section B ?					
	(a) 12√3 m (b) 12√2 m (c) 8√3 m (d) 4√2m					
(ii)	What is the height of the section A ?					
	(a) $12(2-\sqrt{2})$ (b) $24(2-\sqrt{2})$ (c) $12(3-\sqrt{3})$ (d) $24(3-\sqrt{3})$					
(iii)	What is the length of the wire structure from the point O to the top of					
	section A ?					
	(a) 32√2 m (b) 24√3 m (c) 28√3 m (d) 36√2 m					
(iv)	What is the length of the wire structure from the point O to the top of					
	section B ?					
	(a) 12√3 m (b) 24√3 m (c) 28√3 m (d) 16√3 m					
(v)	What is the angle of depression from top of tower to point O ?					
	(a) 30° (b) 45° (c) 15° (d) 75°					
05	A clinometer is a tool that is used to measure the angle of elevation, or					
	angle from the ground, in a right - angled triangle. We can use a					
	clinometer to measure the height of tall things that you can't possibly					
	reach to the top of flag poles, buildings, trees					
	Ravish got a clinometer from school lab and started the measuring					
	elevation angle in surrounding. He saw a building on which society logo					

	is painted on wall of building. From a point P on the ground level, the					
	angle of elevation of the roof of the building is 45°. The angle of					
	elevation of the centre of logo is 30° from same point. The point P is at					
	a distance of 24 m from the base of the building.					
	On the basis of the above information, answer the following questions:					
(i)	What is the height of the building logo from ground ?					
	(a) 8√2 m (b) 4√3 m (c) 8√3 m (d) 4√2 m					
(ii)	What is the height of the building from ground ?					
	(a) 24(3-√3)m (b) 8 (3-√3) m (c) 24 m (d) 32 m					
(iii)	What is the aerial distance of the point P from the top of the building ?					
	(a) $24\sqrt{3}$ m (b) $24\sqrt{2}$ m (c) $32\sqrt{3}$ m (d) $32\sqrt{2}$ m					
(iv)	If the point of observation P is moved 9 m towards the base of the					
	building, then the angle of elevation $\boldsymbol{\theta}$ of the logo on building is given					
	by					
	(a)tan $\theta = \sqrt{3}$ (b)tan $\theta = 2/\sqrt{3}$ (c)tan $\theta = 1/2$ (d)tan $\theta = 8\sqrt{3}/15$					
(v)	In above case the angle of elevation $\boldsymbol{\phi}$ of the top of building is given by					
	(a)tan ϕ =1.6 (b)tan ϕ =1.5 (c)tan ϕ =0.75 (d)tan ϕ =0.8					
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)					
	Write 'True' or 'False' (que no 1 to 4) -					
Q1	If the length of the shadow of a tower is increasing, then the angle of					
	elevation of the sun is also increasing.					
Q2	If a man standing on a platform 3 metres above the surface of a lake					
	observes a cloud and its reflection in the lake, then the angle of					
	elevation of the cloud is equal to the angle of depression of its					
	reflection.					
Q3	The angle of elevation of the top of a tower is 30°. If the height of the					
----	---					
	tower is doubled, then the angle of elevation of its top will also be					
	doubled.					
01	If the height of a tower and the distance of the point of cheerysticn					
Q4	If the height of a tower and the distance of the point of observation					
	from its foot, both, are increased by 10%, then the angle of elevation					
	of its top remains unchanged.					
	Fill in the blanks (que no 5 to 8) -					
Q5	The is the line drawn from the eye of an observer to the					
	point in the object viewed by the observer.					
Q6	The of the point viewed is the angle formed by the					
	line of sight with the horizontal when the point being viewed is above					
	the horizontal level					
Q7	The of a point on the object being viewed is the angle					
	formed by the line of sight with the horizontal when the point is below					
	the horizontal level					
Q8	The distance between					
	two distant objects can be determined with the help of trigonometric					
	ratios.					
	Instructions (que no 9 & 10) -					
	In the following questions, a statement of assertion (A) is followed by a					
	statement of reason (R). Mark the correct					
	choice as:					
	(a) Both assertion (A) and reason (R) are true and reason (R) is the					
	correct explanation of assertion (A).					
	(b) Dath acception (A) and we see (D) and the low (D) is shift					
	(b) Both assertion (A) and reason (R) are true but reason (R) is not the					
	correct explanation of assertion (A).					
	(c) Assertion (A) is true but reason (R) is false.					
1						

	(d) Assertion (A) is false but reason (R) is true.
Q9	Assertion (A): If the angle of elevation of Sun, above a perpendicular
	line (tower) decreases, then the shadow of
	tower increases
	Reason (R): It is due to decrease in slope of the line of sight.
Q10	Assertion (A): When we move towards the object, angle of elevation
	decreases.
	Reason (R): As we move towards the object, it subtends large angle at
	our eye than before.
	,
	SHORT ANSWER TYPE QUESTIONS
Q1	Find the angle of elevation of the sun when the shadow of a pole h
	metres high is $\sqrt{3}$ h metres long.
Q2	A ladder 15 metres long just reaches the top of a vertical wall. If the
	ladder makes an angle of 60° with the wall, find the height of the wall.
Q3	Two pillars of equal heights are on either side of a road, which is
	hundred metres wide. The angles of elevation of the tops of the pillars
	are 60° and 30° at a point on the road between the pillars. Find the
	position of the point between the pillars?
Q4	From a point on the ground, the angles of elevation of the bottom and
	top of a water tank kept on the top of the 30 m high building are 30°
	and 45° respectively. Find the height of the water tank?
Q5	From the top of a multi-storeyed building, 90m high, the angles of
	depression of the top and the bottom of a tower are observed to be
	30° and 60° respectively. Find the height of the tower?
Q6	Two ships are there in the sea on either side of a lighthouse in such a
	way that the ships and the base of the lighthouse are in the same
	straight line. The angles of depression of two ships as observed from

	the top of the lighthouse are 60° and 45° . If the height of the
	lighthouse is 200m, find the distance between the two ships.
Q7	From the top of a 300 metre high light-house, the angles of depression
	of two ships, which are due south of the observer and in a straight line
	with its base, are 60° and 30° .Find their distance apart?
Q8	A Statue, 1.6 m tall, stands on the top of a pedestal. From a point on
	the ground, the angle of elevation of the top of the statue is 60° and
	from the same point, the angle of elevation of the top of the pedestal is
	45° . Find the height of the pedestal? (Use $\sqrt{3} = 1.73$)
Q9	A peacock is sitting on the top of a tree. It observes a serpent on the
	ground making an angle of depression of 30° . The peacock with the
	speed of 300 metre/ minute catches the serpent in 12 seconds. What is
	the height of the tree?
Q10	An aero plane, at an altitude of 1200 m, finds that two ships are sailing
	towards it in the same direction. The angles of depression of the ships
	as observed from the aeroplane are 60° and 30° respectively. Find the
	distance between the two ships?
	LONG ANSWER TYPE QUESTIONS
Q1	A spherical balloon of radius r subtends an angle $\boldsymbol{\theta}$ at the eye of an
	observer. If the angle of elevation of its centre is $\boldsymbol{\phi},$ find the height of
	the centre of the balloon.
Q2	From a balloon vertically above a straight road, the angles of
	depression of two cars at an instant are found to be 45° and 60°. If the
	cars are 100 m apart, find the height of the balloon.
Q3	The angle of elevation of a cloud from a point h metres above the
	surface of a lake is $\boldsymbol{\theta}$ and the angle of depression of its reflection in the
	lake is ϕ . Find the height of the cloud above the lake.

Q4	The angle of elevation of the top of a tower from certain point is 30°. If
	the observer moves 20 metres towards the tower, the angle of
	elevation of the top increases by 15°. Find the height of the tower.
Q5	The angle of elevation of the top of a tower from two points distant s
	and t from its foot are complementary. Find the height of the tower.
Q6	The shadow of a tower standing on a level plane is found to be 50 m
	longer when Sun's elevation is 30° than when it is 60°. Find the height
	of the tower.
Q7	A vertical tower stands on a horizontal plane and is surmounted by a
	vertical flag staff of height h. At a point on the plane, the angles of
	elevation of the bottom and the top of the flag staff are a and β ,
	respectively. Find the height of the tower.
Q8	The angle of elevation of the top of a tower 30 m high from the foot of
	another tower in the same plane is 60° and the angle of elevation of
	the top of the second tower from the foot of the first tower is 30°. Find
	the distance between the two towers and also the height of the other
	tower.
Q9	From the top of a tower h m high, the angles of depression of two
	objects, which are in line with the foot of the tower are a and β (β >
	a). Find the distance between the two objects.
Q10	The angle of elevation of the top of a vertical tower from a point on the
	ground is 60° . From another point 10 m vertically above the first, its
	angle of elevation is 45° . Find the height of the tower.

CHAPTER-09

SOME APPLICATIONS OF TRIGONOMETRY

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS					
Ans 1	(A) 60°					
Ans 2	(B) is decreasing					
Ans3	C) will be less than 60 degree					
Ans4	(C) remains unchanged					
Ans5	(A) 7.5m					
Ans6	(B) 45°					
Ans7	(C) not equal to the angle of depression of its reflection					
Ans8	(D) 3:1					
Ans9	(A) 10√3 m					
Ans10	(D) 8.598 m					
	SOLUTIONS TO CASE STUDIES/ SOURCE BASEDINTEGRATED QUESTIONS					
Ans1						
(i)	(a) 60°					
(ii)	(c) 3.7m					
(iii)	(d) 4.28 m					
(iv)	(b) 2.14 m					
(v)	(c) 8.56 m					
Ans2						
(i)	b) 45°					
(ii)	a) 25.24 m					

(iii)	a) 20√3 m
(iv)	b)45°
(v)	a) corresponding angle
Ans3	
(i)	a) 1139.4 km
(ii)	c) 1937 km
(iii)	b) 577.52 km
(iv)	b) 45°
(v)	c) 1937 km
Ans4	
(i)	(a) 12√3 m
(ii)	(c) 12(3-√3)
(iii)	(d) 36√2 m
(iv)	(b) 24√3 m
(v)	(b) 45°
Ans5	
(i)	(c) 8√3 m
(ii)	(c) 24 m
(iii)	(b) 24√2 m
(iv)	(d) $\tan \theta = 8\sqrt{3}/15$
(v)	(a) $\tan \varphi = 1.6$
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Ans 1	False

Ans 2	False
Ans3	False
Ans4	True
Ans5	line of sight
Ans6	angle of elevation
Ans7	angle of depression
Ans8	height or length, distance
Ans9	(a) Both assertion (A) and reason (R) are true and reason (R) is the
	correct explanation of assertion (A).
Ans10	(d) Assertion (A) is false but reason (R) is true.
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans 1	30°
Ans 2	15/2 m
Ans3	25 m
Ans4	30(√3-1)
Ans5	60 metres
Ans6	315.33 m
Ans7	200√3 m
Ans8	2.2 m (approx)
Ans9	30m
Ans10	800√3 m
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans 1	r sin ϕ cosec $\theta/2$
Ans 2	50 (3 + √3) m.
Ans3	h(tan $φ$ + tan $θ$)/ (tan $φ$ - tan $θ$)

Ans4	10 (√3 +1) m
Ans5	√st
Ans6	25√3 m
Ans7	h tanα/(tanβ-tana)
Ans8	10√3 m; 10 m
Ans9	h (cot a – cot β)
Ans10	5 (√3+3) m

CHAPTER: 10

CIRCLE

	COMPETENCY BASED QUESTIONS							
Q1	Two balls of equal size are touching each other externally at point C and AB is common tangent to the balls. Then \angle ACB= ?							
	(a) 6	50 ⁰ (b)) 45 ⁰ (c) 30 ⁰	(d) 90 ⁰		
Q2	Radha and Shyama were arguing that how many parallel tangents can a circle have ? Can you help them ?							
	(a)	1	(b) 2 ((c) infinit	е	(d) none	of these	
Q3	B P 5 cm - C							
	Three friends Ram, Shyam and Rahim are playing in a triangular park in which there is a circular rose garden as shown in the fig. Three friends are standing at points A, B and C respectively. By the information given in the figure, can you calculate perimeter of the park ?							
	(a)	30 cm	(b) 60cm	(c)	45cm	(d) 150	cm	
Q4	If four s	sides of the	e quadrilatera	I ABCD a	ire tange	nts to a circ	cle , then	
	(a) (b)	AC+AD= AB+CD=	BD+CD AC+BC	(c) AB+ (d)AC+	CD=BC+ AD=BC+	AD DB		
Q 5	AP and and rad	AQ are tan lius 9 cm. I	igents drawn f OA=15 cm,	from a p then AP	oint A to +AQ=	a circle wit	:h centre O	
	(a)	12cm	(b) 18cm	(0	c) 24cm	(d)	36cm	
Q 6	$O \rightarrow C \qquad B$							
	If comn intersed	non tangen ct at E, the	ts AB and CD n find OEO'=) of two v ?	wheels w	ith centre C) and O'	
	(a) a t	riangle	(b) a line	(c) a	n arc	(d) none of	fthese	

of circular park is 15 meter and distance of centre to the tree is 25						
meter then answer the following questions ?						
C C C C C C C C C C C C C C C C C C C						
What is the distance between gate P and tree R?						
(a)10meter (b) 15 meter (c) 20 meter (d) 25 meter						
Find \angle OPR=?						
(a)60 ⁰ (b) 90 ⁰ (c) 120 ⁰ (d) none of these						
What is the area of Δ ROQ ?						
(a)120 m ² (b)140 m ² (c) 150 m ² (d) 180m ²						
If $\angle PRQ = 30^{\circ}$ then find $\angle POQ = ?$						
(a)120 ⁰ (b) 130 ⁰ (c) 150 ⁰ (d)180 ⁰						
Find \angle OPQ=?						
(a)10 ⁰ (b) 15 ⁰ (c) 20 ⁰ (d) 25 ⁰						
Raksha Bandhan, is a popular annual rite, or ceremony, which is celebrated in South Asia, and in other parts of the world significantly influenced by Hindu culture. On this day, sisters of all ages tie a talisman, or amulet, called the rakhi, around the wrists of their brothers, symbolically protecting them, receiving a gift in return, and traditionally investing the brothers with a share of the responsibility of their potential care. Krishna made up a rakhi for his brother Sumit using three circles of radius 2cm,4cm and 2cm respectively. Figure for the same is given below:						

	Based on this information answer the following questions?						
(i)	Length of AB =?						
	(a)8cm	(b)10cm	(c)12cm	(d) 14cm			
(ii)	If PQ, RS, then ∠ QP	JT and IU are tar A=?	ngents to the circ	cles as shown in the fig.			
	(a)∠ PAC	(b) ∠ PQC	(c) ∠ QCA	(d) ∠ PAX			
(iii)	Find CX?						
	(a)9cm	(b)10cm	(c) 12cm	(d)8cm			
(iv)	Find appro	ximate value of (QX=?				
	(a)9 cm	(b) 9.8cm	(c) 10.6cm	(d)12cm			
(v)	If ∠PXR=4	10 [°] , find $\angle PAX =$?				
	(a)40 ⁰	(b)60 ⁰	(c)65 ⁰	(d)70 ⁰			
Q 3	island is also made up artificially to attract the tourists. If radius of island is 8km then answer the following questions ?						
(;)			LAD of lowgon oin				
(1)	circle?	ngth of the chorc	I AB of larger cir	cie which touch the smaller			
	(a)6km	(b)12km	(c) 18km	(d) 9km			
(ii)	Find ∠OCA	=?					
	(a)80 ⁰	(b) 85 ⁰	(c)90 ⁰	(d) 95 ⁰			
(iii)	A person is are tangen centre of t	s standing at a po its to the sea. Ca he sea.	pint P outside the n you find the di	e sea such that AP and BP stance of the person from			
	(a)10km	(b)10.5km	(c) 12km	(d) 12.5km			
(iv)	Find AP=?						
	(a)7.5 km	(b) 8km	(c)8.5km	(d) 9km			

(v)	If $\angle APB=40^{\circ}$ find $\angle AOP$?							
	(a)40 ⁰	(b)60 ⁰	(c)70 ⁰	(d)80 ⁰				
Q 4	A child is pl and try to c floor and st and draw it the followin	aying with a co atch it in the co art thinking abo on a paper as s g questions?	ne and ball. H one. When he out the 2D sha shown below.	e is throwing the b get tired ,he sat do pe of the ball insid Based on the figur	all upward own on the le the cone e answer			
		¥						
(i)	If AB abd B $\Delta ABC?$	C are tangents	to the ball the	n which type of tri	angle is			
	(a)equilater	al (b) isoce	eless (c) se	calen (d) nor	ne of these			
(ii)	If ∠ACB=30	⁰ ,then find ∠OE	3C=?					
	(a)70 ⁰	(b) 75 ⁰	(c)80 ⁰	(d) 90 ⁰				
(iii)	If OC=10cm	n, AC=8cm , fin	d the radius o	f the ball ?				
	(a)4cm	(b)5cm	(c) 6cm	(d)8cm				
(iv)	Find ∠OCB	+ ∠OBA=?						
	(a)10 ⁰	(b) 15 ⁰	(c)20 ⁰	(d) 30 ⁰				
(v)	If AC= 21cr	m and BC= x^2+5	\overline{b} , then x=?					
	(a)8cm	(b)16cm	(c) 9cm	(d)4cm				
Q 5	The chain are some re shown below Based on th	and gears of bi eal life illustration w in which PI and the information e	cycle or motor ons of tangent nd PA are tang exibit in fig. an	rcycle or belt arour is to the circle. One gents to the gears iswer the fillowing	nd pulleys e such fig is of bicycle. questions?			
(i)	If PI=20cm	then PA=?						
	(a)20cm	(b)12cm	(c)14cm	(d)15cm				

(ii)	If PO=16cr	n then IA=?		
	(a)12cm	(b)15cm	(c)20cn	n (d)24cm
(iii)	If∠IPA=20	⁰ find ∠POI=?		
	(a)60 ⁰	(b) 70 ⁰	(c)80 ⁰	(d)90 ⁰
(iv)	PI=2x + 8, then x=?			
	(a)6cm	(b) 8cm	(c) 10cm	(d) 12cm
(v)	If arc IZA subtend an angle of 260° at the centre of the circle, then IPA=?			e centre of the circle, then
	(a)60 ⁰	(b)70 ⁰	(c)80 ⁰	(d)90 ⁰
	OB	JECTIVE TYPE		(OTHER THAN MCQs)
Q 1	Tangent lir (true/false	ies at the end ¡)	point of the dian	neter of a circle are parallel.
Q 2	Tangent to a circle intersect the circle at how many points?			
Q 3	How many tangents are parallel to a given secant.			
Q 4	The tangent at any point of circle is perpendicular to thethrough the point of contact.			
Q 5	to a circle is a line that intersect circle at only one point.			
Q 6	AB and CD are common tangents to two circles, if radii of the two circles are equal, then AB = CD.(true/false)			
Q 7	The lengths of tangents drawn from an external point to a circle are not equal.(true/false)			
Q 8	The common point of a tangent to a circle with the circle is called			
Q 9	Two tangents TP and TQ are drawn to a circle with Centre O from an external point T. Then \angle PTQ = \angle OPQ.			
Q 10	Parallelogram circumscribing a circle is a rhombus.(true/false)			
	SHORT ANSWER TYPE QUESTIONS			
Q 1	Two tanger external po	nts TP and TQ pint T. Prove th	are drawn to a at ∠PTQ=2 ∠OF	circle with Centre O from an Q
Q 2	Ram prepa PA and PB ΔPRT is 86	red a model fo are the pipes t cm ,then deter	r rain water har ouching the circ mine the length	vesting . in the following fig. ular pond. If the perimeter of of each pipe.

	A B T		
Q 3	A point P is 26 cm away from the centre O of a circle and the length of the tangent drawn from P to the circle is 24 cm. Find the radius of the circle?		
Q 4	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.		
Q 5	In the given fig. AB is diameter of the circle with centre O and AT is tangent . If $\angle AOQ = 58^{\circ}$, Find $\angle ATQ$.		
Q 6	If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then \angle POA is equal to?		
Q 7	The sides AB, BC and CA of a triangle ABC touch a circle at D, E and F respectively. If DA = 6 cm, BD = 5 cm and AC = 14 cm, find the length of BC (in cm). $ \int		
Q 8	TP and TQ are the two tangents to a circle with center O so that angle \angle POQ = 130 ^o . Find \angle PTQ.		
Q 9	The sides AB, BC and CA of a triangle ABC touch a circle at P, Q and R respectively. If AP = 4 cm, BQ = 3 cm and CR = 5 cm, find the perimeter of \triangle ABC (in cm).		
Q 10	Two concentric circles are of radii 7 cm and r cm respectively, where $r > 7$. A chord of the larger circle, of length 48 cm, touches the smaller circle. Find the value of r.		

CHAPTER-10

CIRCLE

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(d) 90 ⁰
Ans 2	(b)2
Ans 3	(a)30cm
Ans 4	(c)AB+CD=BC+AD
Ans 5	(b)24cm
Ans 6	(b) a line
Ans 7	(b) 50 ⁰
Ans 8	(c) 12cm
Ans 9	(a) 8cm
Ans10	(d) 9cm
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Ans 1	
(i)	(c) 20 meter
(ii)	(b) 90 ⁰
(iii)	(c) 150 m ²
(iv)	(c) 150 ⁰
(v)	(b) 15 ⁰
Ans 2	
(i)	(c)12cm
(ii)	(b) ∠ PQC
(iii)	(a)9cm
(iv)	(b) 9.8cm

(v)	(d)70 ⁰
Ans 3	
(i)	(b)12km
(ii)	(c)90 ⁰
(iii)	(d) 12.5km
(iv)	(a)7.5 km
(v)	(c)70 ⁰
Ans 4	
(i)	(b) isosceles
(ii)	(b) 75 ⁰
(iii)	(c) 6cm
(iv)	(d) 30 ⁰
(v)	(d)4cm
Ans 5	
(i)	(a)20cm
(ii)	(d)24cm
(iii)	(c)80 ⁰
(iv)	(a)6cm
(v)	(c)80 ⁰
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Ans 1	True
Ans 2	One
Ans 3	Тwo
Ans 4	Radius
Ans 5	Tangent
Ans 6	True

Ans 7	False		
Ans 8	Point of contact		
Ans 9	2		
Ans10	True		
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS		
Ans 1	Here ΔTPQ is an isosceles triangle.		
	So ∠TPQ=∠TQP=1/2(180-∠PTQ)=90 ⁰ -∠PTQ/2		
	∠ OPQ=∠OPT-∠TPQ		
	=90-(90-∠PTQ/2)		
	=∠PTQ/2		
	So ∠PTQ=2∠OPQ		
Ans 2	Length of each pipe=1/2(perimeter of triangle PRT)		
	=1/2(86)		
	=43cm		
Ans 3	Length of tangent=24cm		
	OP=26cm		
	Radius of circle= $\sqrt{(26^2-24^2)}$		
	=10cm		
Ans 4	Length of chord =2($\sqrt{(5^2-3^2)}$)		
	= 2x 4		
	=8		
Ans 5	∠AOQ=2 ∠ABQ		
	SO $\angle ABQ = \frac{58}{2} = 29^{\circ}$		
	∠ATQ=180 ⁰ -∠TAB-∠ABT		
	$=180^{0}-90^{0}-29^{0}$		
	=610		
Ans 6	$\angle POA = \frac{1}{2} (180^{\circ} \angle APB)$		
	$=\frac{1}{2}(180^{0}-80^{0})$		
	=50°		

Ans 7	DA=AF=6cm		
	BE=BD=5cm		
	AC=14cm		
	CF=AC-AF		
	=14-6		
	=8cm		
	BC=CE+BE		
	=CF+BE		
	=8+5		
	=13cm		
Ans 8	∠PTQ=180 ⁰ -∠POQ		
	$=180^{0}-130^{0}$		
	=50°		
Ans 9	Perimeter of $\Delta ABC=2(AP+BQ+CR)$		
	=2(4+3+5)		
	=2x12		
	=24cm		
Ans10	$r = \sqrt{(7^2 + 24^2)}$		
	=√(49+576)		
	=√625		
	=25cm		
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS		
Ans 1	∠OPR = 90°		
	PR = RQ [Tangents drawn from an external point are equal $\sqrt{PRO} = 1/2 \sqrt{PRO} = 1/2 \times 120^{\circ} = 60^{\circ}$		
	Now, In $\triangle OPR$,		
	P		
	B		
	-la		
	$\Rightarrow \angle OPR + \angle POR + \angle ORP = 180^{\circ}$		
	$\Rightarrow 90^{\circ} + \angle POR + 60^{\circ} = 180^{\circ}$		

	$\Rightarrow \angle POR + 150^{\circ} = 180^{\circ}$ $\Rightarrow \angle POR = 30^{\circ}$		
	$\Rightarrow \sin 30^{\circ} = PR/OR \Rightarrow 1/2 = PR/OR$ $\Rightarrow OR = 2RP$		
	$\Rightarrow OR = 2PR$ $\Rightarrow OR = PR + QR (: PR = RQ)$		
Ans 2	$AR = \frac{1}{2}$ (Perimeter of ABC)		
	$=\frac{1}{2}(12+8+10)$		
	=15		
Ans 3	DR = DS		
	BP = BQ		
	AP = AS		
	CR = CQ		
	Since they are tangents on the circle from points D, B, A, and C respectively.		
	Now, adding the LHS and RHS of the above equations we get,		
	DR + BP + AP + CR = DS + BQ + AS + CQ		
	By rearranging them we get,		
	(DR + CR) + (BP + AP) = (CQ + BQ) + (DS + AS)		
	By simplifying,		
	AD + BC = CD + AB		
Ans 4	$\angle ACB = 90^{\circ}$ (Angle in the semicircle) $\angle CAB = 30^{\circ}$ (given) In $\triangle ABC$,		
	$\Rightarrow \angle ABC = 60^{\circ}$		
	Now, $\angle PCA = \angle ABC$ (Angles in the alternate segment) $\therefore \angle PCA = 60^{\circ}$		
Ans 5	OA = 6 cm, OB = 4 cm, AP = 8 cm $OP^2 = OA^2 + AP^2 = 36 + 64 = 100$ $\Rightarrow OP = 10 \text{ cm}$ $BP^2 = OP^2 - OB^2 = 100 - 16 = 84$		
	\Rightarrow BP = 2 $\sqrt{21}$ cm		
Ans 6	\because PA and PB are tangents to a circle with centre O, \therefore OA \perp AP and OB \perp PB		
	i.e., $\angle APB = 80^{\circ}$, $\angle OAP = 90^{\circ}$, and $\angle OBP = 90^{\circ}$		
	$\angle APB + \angle PBO + \angle BOA + \angle OAP = 360^{\circ}$		
	$\Rightarrow 80^{\circ} + 90^{\circ} + \angle BOA + 90^{\circ} = 360^{\circ}$		

	⇒ 260° + ∠BOA = 360° ∴ ∠BOA = 360° - 260° ⇒ ∠BOA = 100° Now, in \triangle POA and APOB we have OP = OP (Common) OA = OB (Radii of the same circle) ∠OAP = ∠OBP = 90° ∴ \triangle POA \cong APOB (RHS congruence condition) ⇒ ∠POA = ∠POB (CPCT) Now, ∠POA = 1/2 (∠BOA) = 1/2 × 100 = 50°		
Ans 7	Given: $r_2 - r_1 = 7 (r_2 > r_1)(i)$ and $\pi(r_2^2 - r_1^2) = 1078$ $\pi (r_2 - r_1) (r_2 + r_1) = 1078$ [(From equation (i)] $\Rightarrow r_2 + r_1 = \frac{1078X7}{22} = 49(ii)$ Adding (i) and (ii), we get $2r_2 = 56$ $\Rightarrow r_2 = 28 \text{ cm}$ $r_1 = 21 \text{ cm}$ [From equation (ii)] \therefore Radius of smaller circle = 21 cm.		
Ans 8	Let ABCD be a parallelogram such that its sides touch a circle with centre O. We know that the tangents to a circle from an exterior point are equal in length. Therefore, we have AP = AS [Tangents from A] BP = BQ [Tangents from B] (ii) CR = CQ [Tangents from C] (iii) And DR = DS [Tangents from D] (iv) Adding (i), (ii), (iii) and (iv), we have (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ) AB + CD = AD + BC AB + AB = BC + BC [:: ABCD is a parallelogram $\therefore AB = CD, BC = DA$] $2AB = 2BC \Rightarrow AB = BC$ Thus, $AB = BC = CD = AD$ Hence, ABCD is a rhombus.		
Ans 9	In right $\triangle POT$ $PT = \sqrt{OT^2 - OP^2}$ $PT = \sqrt{169 - 25} = 12 \text{ cm and}$ TE = 8 cm Let PA = AE = x (Tangents from an external point to a circle are equal) In right $\triangle AET$ $TA^2 = TE^2 + EA^2$		

	$\Rightarrow (12 - x)^2 = 64 + x^2$		
	$\Rightarrow 144 + x^2 - 24x = 64 + x^2$		
	$\Rightarrow x = 80/24$		
	\Rightarrow x = 3.3 cm		
	Thus, $AB = 6.6$ cm		
Ans10	AB is a diameter of the circle.		
	$\therefore \angle APB = 90^{\circ}$		
	(Angle in a semi-circle is a right angle)		
	$\therefore \angle APB + \angle BPC = 180^{\circ}$		
	$\therefore 90^{\circ} + 2BPC = 180^{\circ}$		
	$\therefore \angle BPC = 90^{\circ} \dots (1)$		
	\therefore In \triangle ABC \angle ABC = 90°		
	\therefore ZBAC + ZACB = 90° (II) (\because The sum of the three angles of a		
	triangle is 180°.)		
	From equations (I) and (II)		
	2DPC = 2DAC + 2ACD		
	$OI \ ZDPQ + ZCPQ = ZDAC + ZACD \dots (III)$		
	(Angle in the alternate segment)		
	$\sim CPO - \sim ACB$		
	$\rightarrow \sqrt{CPO} = \sqrt{PCO}$		
	$\rightarrow 2CPQ - 2PCQ$		
	$(\cdot ZACD - ZFCQ)$		
	$A_{\text{rapin}} PO = OB \qquad (v)$		
	(Tangent lines drawn from an external point to a circle are equal.)		
	: From equations (iv) and (v)		
	$\Omega C = \Omega B$		
	Hence PO intersects BC		

CHAPTER: 12

AREAS RELATED TO CIRCLES

	COMPETENCY BASED QUESTIONS		
Q1	If θ is the angle (in degrees) of a sector of a circle of radius r, then		
	area of the sector is		
	a) $\frac{\pi r^2 \theta}{360^0}$		
	b) $\pi r^2 \theta$		
	$D \int \frac{1}{180^{\circ}}$		
	C) $\frac{2\pi r\theta}{360^{0}}$		
	d) $\frac{2\pi r\theta}{2}$		
	² 180 ⁰		
Q2	Area of the largest triangle that can be inscribed in a semi-circle of		
	radius r units is		
	a) r^2 sq units		
	b) $\frac{1}{2}r^2$ sq units		
	c) $2r^2$ sq units		
	d) $\sqrt{2}r^2$ sq units		
Q3	If the circumference of a circle and the perimeter of a square are		
	equal, then		
	(A) Area of the circle = Area of the square (A)		
	(B) Area of the circle > Area of the square		
	(C) Area of the circle < Area of the square		
	(D) Nothing definite can be said about the relation between the areas		
	of the circle and square.		
Q4	The radii of two circles are 4cm and 3 cm respectively. The diameter		
	of the circle having area equal to the sum of the areas of the two		
	circles (in cm) is :		
	a) 5		

	b) 7		
	c) 10		
	d) 14		
Q 5	Which constant ratio is denoted by π (pi) ?		
	a) <u>diameter</u> circumference		
	b) <u>area</u> <u>circumference</u>		
	C) <u>circumference</u> diameter		
	d) <u>area</u> <u>diameter</u>		
Q 6	The minute hand of a clock is 14 cm long. The area described by it on		
	the face of clock in 5 minutes is		
	a) 51.33 sq cm		
	b) 15.33 sq cm		
	c) 21.15 sq cm		
	d) 12.35 sq cm		
Q 7	Assertion : Two circles touch externally. If their radii are 11 cm and		
	3cm, the distance between their centers is 14cm.		
	Which of the following is the correct reason for above assertion ;		
	a) When two circles touch externally the distance between their		
	centers is equal to the sum of their radii.		
	b) When two circles touch externally the distance between their		
	centers is equal to the difference of their radii.		
	c) When two circles touch externally the distance between their		
	centers is equal to the product of their radii.		
	d) When two circles touch externally the distance between their		
	centers is equal to the division of their radii.		
Q 8	Find the area of largest circle that can be drawn inside the given		
	rectangle of length 'a' cm and breadth 'b' cm. $(a>b)$		
	a) $\frac{a^2\pi}{4}$		
	b) $\frac{b^2\pi}{2}$		
	C) $\frac{b^2\pi}{4}$		

	d) $\frac{a^2\pi}{2}$		
Q 9	If the radius of a circle is 3.5 cm. Which of the is not matched		
	correctly;		
	Column I	Column II	
	a) Area of circle	38.5 <i>cm</i> ²	
	b) Area of quadrant of circle	$9.625 \ cm^2$	
	c) Circumference of circle	44 <i>cm</i>	
	d) Area of largest square	$24.5 cm^2$	
	inscribed in the circle		
Q10	The ratio of area of two circles whose ratio of circumference is 3:1		
	will be		
	a) 3:1		
	b) 1:3		
	c) 1:9		
	d) 9:1		
Q11	The area of the square is same as the area of circle. What will be		
	ratio of their perimeters		
	a)1:1		
	b) $\pi: \sqrt{2}$		
	c) 2: $\sqrt{\pi}$		
	d) None of these		
Q12	On increasing the diameter of circle	by 40%, its area will be	
	increased by		
	a) 40%		
	b) 80%		
	c) 96%		
	d) 45%		
	CASE STUDIES/ SOURCE BASED	INTEGRATED QUESTIONS	
Q 1	A brooch is a small piece of jeweller	y which has a pin at the back so	
	it can be fastened on a dress, blous	e or coat. Designs of some brooch	
	are shown below. Observe them car	efully.	

	Design A : Brooch A is made with silver wire in the form of a circle
	with diameter 28mm. The wire used for making 4 diameters which
	divide the circle into 8 equal parts.
	Design B : Brooch b is made two colours - Gold and silver. Outer part
	is made with Gold. The circumference of silver part is 44mm and the
	gold part is 3mm wide everywhere.
(i)	Refer to Design A
	The total length of silver wire required is
	a) 180 mm
	b) 200 mm
	c) 250 mm
	d) 280 mm
(ii)	The area of each sector of the brooch is
	a) 44 sq mm
	b) 52 sq mm
	c) 77 sq mm
	c) 77 sq mm d) 68 sq mm
(iii)	c) 77 sq mm d) 68 sq mm Refer to Design B
(iii)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is
(iii)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm
(iii)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm
(iii)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm
(iii)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm d) 62.86 mm
(iii) (iv)	 c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm d) 62.86 mm The difference of areas of golden and silver parts is
(iii) (iv)	c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm d) 62.86 mm The difference of areas of golden and silver parts is a) 18π
(iii) (iv)	c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm d) 62.86 mm The difference of areas of golden and silver parts is a) 18π b) 44π
(iii) (iv)	c) 77 sq mm d) 68 sq mm Refer to Design B The circumference of outer part (golden) is a) 48.49 mm b) 82.2 mm c) 72.50 mm d) 62.86 mm The difference of areas of golden and silver parts is a) 18π b) 44π c) 51π

(v)	A boy is playing with brooch B. He makes revolution with it along its
	edge. How many complete revolutions must it take to cover 80 mm ?
	a) 2
	b) 3
	c) 4
	d) 5
Q 2	A horse is tied to a peg at one corner of a square shaped grass field
	of sides 15m by means of a 5m long rope (see the given figure).
(i)	What is the area of the grass field ?
	a) 225 m^2
	b) 225m
	c) 255 <i>m</i> ²
	d) 15m
(ii)	The area of that part of the field in which the horse can graze .
	a) 19.625 m^2
	b) 19.265 <i>m</i> ²
	c) 19 <i>m</i> ²
	d) 78.5 <i>m</i> ²
(iii)	The grazing area if the rope were 10m long instead of 5m.
	a) 7.85 <i>m</i> ²
	b) 785 <i>m</i> ²
	c) 225 <i>m</i> ²
	d) 78.5 <i>m</i> ²
1	

	The increase in the grazing area if the rope were 10m long instead of
	5m.
	a) 58.758 m ²
	b) 58.875 m^2
	c) 58 m^2
	d) 78 5 m^2
	u) 78.5 m
(v)	The given problem is based on which concept?
	a) Coordinate geometry
	b) Area related to circles
	c) Circle
	d) None of these
Q 3	A brooch is made with silver wire in the form of a circle with
	diameter 35 mm. The wire is also used in making 5 diameters
	which divide the circle into 10 equal sectors as shown in Fig .
(i)	What is the radius of the circle ?
(i)	What is the radius of the circle ? a) 35/2 mm
(i)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm
(i)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm
(i)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm
(i) (ii)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm What is the circumference of the brooch ?
(i) (ii)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm What is the circumference of the brooch ? a) 100mm
(i) (ii)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm What is the circumference of the brooch ? a) 100mm b) 110 mm
(i) (ii)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm What is the circumference of the brooch ? a) 100mm b) 110 mm c) 50mm
(i) (ii)	What is the radius of the circle ? a) 35/2 mm b) 5/2 mm c) 35mm d) 10mm What is the circumference of the brooch ? a) 100mm b) 110 mm c) 50mm d) 10mm

(iii)	What is the total length of silver wire required ?
	a) 528 mm
	b) 825mm
	c) 285mm
	d) 852mm
(iv)	What is the area of the each sector of the brooch ?
	a) 385/2 mm ²
	b) 358/2 mm ²
	c) 585/2 mm ²
	d) 385/4 mm ²
(v)	The given problem is based on which mathematical concept?
	a) Construction
	b) Area related to circles
	c) Circle
	d) None of these
Q 4	It is a clock that uses a pendulum, a swinging weight, as its
	timekeeping element. From its invention in 1656 by Christiaan
	Huygens, the pendulum clock was the world's most precise
	timekeeper, accounting for its widespread use. Their greater accuracy
	allowed for the faster pace of life which was necessary for the
	Industrial Revolution. The home pendulum clock was replaced by
	less-expensive, synchronous, electric clocks in the 1930s and 40s.
	Pendulum clocks are now kept mostly for their decorative and
	antique value.

	Dhriti bought a pendulum clock for her living room. the clock contains a small pendulum of length 45 cm. the minute hand and hour hand of the clock are 14 cm and 6 cm long respectively
(i)	What is the area swept by the minute hand in 14 minutes?
	(a) 72.4 <i>cm</i> ²
	(b) 59.4 <i>cm</i> ²
	(c) 86.4 <i>cm</i> ²
	(d) 68.4 <i>cm</i> ²
(ii)	What is the angle described by hour hand in 10 minutes?
	(a) 5°
	(b) 10°
	(c) 12°
	(d) 14°
(iii)	What is the distance covered by the tip of hour hand in 3.5 hours?
	(a) 11 cm
	(b) 12 cm
	(c) 14 cm
	(d) 18 cm
1	

(iv)	If the tip of pendulum covers a distance of 66 cm in complete
	oscillation, what is the angle described by pendulum at the centre?
	(a) 68°
	(b) 42°
	(c) 56°
	(d) 48°
(v)	Concept used for finding the area swept by the minute hand.
	a) Area of sector
	b) Area of segment
	c) Perimeter of sector
	d) None of the above
Q 5	Raju put a fence around a circular field and the total cost came upto
	rs. 6000 at Rs. 30 per metre. He now wants to plough the field .
	CONTRACTOR DUCK
	using the information given , answer the following questions :
(i)	What is the perimeter of field?
	a) 200m
	b) 220m
	c) 240m
	d) 234.5m
(ii)	What is the radius of field ?
	a) 31.81m
	b) 33m
	c) 35.4m
	d) 234.5m

(iii)	What is the area of the field ?
	a) 3180.18 m ²
	b) 2180.18 <i>m</i> ²
	c) 5180.18 <i>m</i> ²
	d) 3024 m^2
	,
(1V)	Find the cost of ploughing the field at the rate of Rs. 0.50 per m^2
	a) Rs. 1590
	b) Rs. 2500
	c) Rs. 3180
	d) Rs. 4183
(v)	Find the cost of ploughing the field at the rate of Rs. 1.50 per m^2 .
	a) Rs. 4770
	b) Rs. 5670
	c) Rs. 3180
	d) Rs. 4183
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees
Q 1	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is
Q 1 Q 2	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius
Q 1 Q 2	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius 5cm is
Q 1 Q 2 Q 3	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius 5cm is A chord of a circle of radius 6cm makes an angle 60° at the center.
Q 1 Q 2 Q 3	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius 5cm is A chord of a circle of radius 6cm makes an angle 60° at the center. Area of minor segment made by the chord is
Q 1 Q 2 Q 3 Q 4	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is
Q 1 Q 2 Q 3 Q 4	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius 5cm is A chord of a circle of radius 6cm makes an angle 60° at the center. Area of minor segment made by the chord is If the radius of a circle is $\frac{7}{\sqrt{\pi}}$ cm, then the area of the circle is
Q 1 Q 2 Q 3 Q 4	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is
Q 1 Q 2 Q 3 Q 4 Q 5	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is The ratio between the circumference and area of a circle of radius 5cm is A chord of a circle of radius 6cm makes an angle 60° at the center. Area of minor segment made by the chord is If the radius of a circle is $\frac{7}{\sqrt{\pi}}$ cm, then the area of the circle is The length of an arc of a sector of a circle with radius <i>r</i> and angle θ
Q 1 Q 2 Q 3 Q 4 Q 5	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Area of a sector of a circle with radius any angle with degrees measures is

Q 7	the number of revolutions made by a circle of radius <i>r</i> to cover a
	distance s is $\frac{s}{2\pi r}$. (true /false)
Q 8	Area of a segment of a circle is less than the area of its
	corresponding sector . (True / False)
Q 9	If the perimeter and the area of a circle are numerically equal , then
	the radius of the circle is 2units . (True/False)
Q 10	$154cm^2$ is the area of circle whose circumference is 44cm.
	(True/False)
	SHORT ANSWER TYPE QUESTIONS
Q 1	Find the circumference of a circle whose area is $301.84cm^2$.
Q 2	The wheel of a motor cycle is of radius 35 cm. How many revolutions
	per minute must the wheel make so as to keep a speed of 66 km/h?
Q 3	Find the area of the sector of a circle of radius 5 cm, if the
	corresponding arc length is 3.5 cm.
Q 4	Find the area of a sector of a circle of radius 28 cm and central angle
	45°.
Q 5	If the perimeter of a semicircular protractor is 66 cm, find the
	diameter of the protractor. (<i>Take</i> $\pi = 22/7$).
0.6	
QG	The inner circumference of a circular track is 220 m. The track is 7 m
	wide everywhere. Calculate the cost of putting up a fence along the
	outer circle at the rate of 72 per metre.
Q 7	A chord of a circle of radius 10 cm subtends a right angle at the
	centre. Find the area of the corresponding major sector. (Use π =
	3.14)
Q 8	The area of a sector is one-twelfth that of the complete circle. Find
	the angle of the sector.
Q 9	Prove that the area of a circular path of uniform width h surrounding a
------	---
	circular region of radius r is $\pi h(2r + h)$.
Q 10	An arc of a circle of length 5π cm bounds a sector whose area is
	$20\pi\ cm^2$. Then, find the radius of the circle .
	LONG ANSWER TYPE QUESTIONS
Q 1	Fig. depicts an archery target marked with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions.
Q 2	The cost of fencing a circular field at the rate of Rs. 24 per metre is Rs. 5280. The field is to be ploughed at the rate of Rs. 0.50 per m ² . Find the cost of ploughing the field (Take π = 22/7).
Q 3	Calculate the perimeter of an equilateral triangle if it inscribes a circle whose area is 154 $\rm cm^2$.
Q 4	A square is inscribed in a circle. Calculate the ratio of the area of the circle and the square.
Q 5	Find the difference of the areas of two segments of a circle formed by a chord of length 5 cm subtending an angle of 90° at the centre.
Q 6	AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Fig.). If $\angle AOB = 30^{\circ}$, find the area of the shaded region.If $\angle AOB = 30^{\circ}$, find the $21cm$
Q 7	Find the area of the segment AYB shown in the figure, if the radius of the circle is 21 cm and \angle AOB = 120°. (Use π = 22/7).

	A 27 cm 0 21 cm
Q 8	Find the area of the shaded region in Fig., if radii of the two
	concentric circles with centre O are 7 cm and 14 cm, respectively and
	$AOC = 40^{\circ}$.
	A B 40 ² O C D
Q 9	A round table cover has six equal designs as shown in Fig. 12.14. If
	the radius of the cover is 28 cm, find the cost of making the designs
	at the rate of ₹ 0.35 per cm ² . (Use $\sqrt{3} = 1.7$)
	A CONSIGNATION OF A CONSIGNATI
Q 10	The diameters of the front and rear wheels of a tractor are 80 cm and 2
	m respectively. Find the number of revolutions that a rear wheel makes
	to cover the distance which the front wheel covers in 800 revolutions.

CHAPTER-12

AREA RELATED TO CIRCLE

SOLUTIONS OF THE PROBLEM

Ans 5	a) <u>circumference</u> diameter	
Ans 6	a) 51.33 sq cm	
Ans 7	a) When two circles touch extern	ally the distance between their
	centers is equal to the sum of	their radii.
Ans 8	a) $\frac{b^2\pi}{4}$	
Ans 9	a) Area of largest square	$24.5 cm^2$
	inscribed in the circle	
Ans10	d) 9:1	
Ans 11	$\pi:\sqrt{2}$	
Ans 12	Let 'd' be the original diameter of a	circle.
	Original Radius of circle ,r = $d/2$	
	Area of original circle, $A = \pi r^2$	
	$A = \pi \times (d/2)^2$	
	$A = \pi d^2/4$	
	Area of original circle = $\pi d^2/4$	
	New diameter , $D = d + 40\%$ of c	i
	[Given diameter of a circle is increas	sed by 40%]
	$D = d + (40/100) \times d$	
	D = d + 0.4d	
	D = 1.4 d	
	Radius of new circle $R = D/2 = 1.46$	d/2 = 0.7 d
	New area of a circle ,A1 = πR^2	
	A1 = $\pi (0.7d)^2$	
	$A1 = \pi \times 0.49d^2$	
	New area of a circle = $\pi \times 0.496$	d ²
	Change in are a = A1 - A	
	= п × 0.49d ² - пd ² /4	

	= nd ² (0.49 - ¼)
	$= \pi d^2 (0.49 \times 4 - 1)/4$
	= nd ² (1.96 - 1)/4
	= nd ² (0.96)/4
	Change in area = 0.24 пd ²
	Percentage increase in area = (change in area/ original area)
	× 100
	= (0.24 nd ² /nd ² /4) × 100
	= (0.24 nd ² × 4 /nd ²) × 100
	$= (0.24 \times 4) \times 100$
	$= 0.96 \times 100$
	= 96 %
	Percentage increase in area = 96%
	Hence, its area increased by 96 %.
	······
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Ans 1	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of
Ans 1 i)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle
Ans 1 i)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = 4*28 + 2*22/7*14
Ans 1 i)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = 4*28 + 2*22/7*14 =112+88
Ans 1 i)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = 4*28 + 2*22/7*14 =112+88 =200mm
Ans 1 i) ii)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = 4*28 + 2*22/7*14 =112+88 =200mm c)77 sq cm
Ans 1 i) ii)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONSB) Total length of wire = length of 4 diameter + circumference of circle $= 4*28 + 2*22/7*14$ $=112+88$ $=200$ mmc)77 sq cmArea of each sector of brooch $= \frac{1}{8} \times area of brooch$
Ans 1 i) ii)	Solutions to case studies/ source based integrated QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = $4*28 + 2*22/7*14$ = $112+88$ = 200 mm c)77 sq cm Area of each sector of brooch = $\frac{1}{8} \times area of brooch$ d)62.86 mm
Ans 1 i) ii) iii) iii)	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS B) Total length of wire = length of 4 diameter + circumference of circle = 4*28 + 2*22/7*14 $= 112+88$ $= 200 mm$ c)77 sq cm Area of each sector of brooch = $\frac{1}{8} \times area of brooch$ d)62.86 mm c) 51 π

	Circumference of silver part of brooch =44cm
	$2\pi r = 44$
	r = 7 mm
	Radius of whole brooch = 10mm
	Circumference of outer edge = $2\pi r$
	$= 2 \times \frac{22}{7} \times 10$
	= 440/7 mm
	ATQ, $n.2\pi r = 80\pi$
	n=4
Ans 2	A) 225m ²
i)	
ii)	a) 19.625m ²
	Explanation: The horse can graze a sector of 90° in a circle of 5m
	radius. Use formula for sector.
iii)	d)78.5m ²
iv)	b) 58.875m ²
v)	b)Area related to circles
Ans 3	a) 35/2 mm
i)	
ii)	b) 110mm
iii)	c) 285 mm
iv)	c)585/4 sq mm
v)	a) Area related to circles
Ans 4	length of the minute hand = 9 cm
i)	Area swept by the minute hand in 14 minutes= area of the sector

	angle created by the minute hand in 14 min
	= 360 ×14/60
	=84
	Area swept by the minute hand in 10 min
	= (84/360)×nr ²
	=(7/30)×3.14×9 ²
	= 59.4 cm ²
ii)	angle described by the hour hand in 10 min
	Since in 12 hrs angle described by hour hand = 360°
	then in 1 hrs = 360/12
	in 60 minutes= 360/12 = 30
	in 10 minutes= 30×10/60
	= 5°
iii)	Distance covered by the tip of the hour hand in 3.5 hrs = perimeter of the sector created
	Angle described in 3.5 hrs = $360 \times 3.5/12 = 105^{\circ}$
	Distance covered= (105/360) × 2 πr
	=(105/360)× 2 ×(22/7)× 6
	=11
vi)	The tip of pendulum covers a distance of 66 cm in complete oscillation
	That means 2 \times arc length = 66
	$2 \times (angle sustained by the pendulum/360) \times 2\pi = 66$
	$2 \times (a/360) \times 2 \times 22/7 \times 45 - 66$
	$2 \wedge (a/300) \wedge 2 \wedge 22/7 \wedge 43 - 00$
	$A = (00 \times / \times 300) / (2 \times 2 \times 22 \times 45)$

	A= 42°
v)	Area swept by the minute hand = Area of the sector
Ans 5	Total cost of fencing = Rs. 6000
i)	Cost for fencing for 1 meter = Rs. 30
	Perimeter of the field (circumference of the fiel) = total cost of
	fencing/cost for 1 meter
	= 6000/30
	= 200 meter
ii)	circumference = 200
	$2\pi r = 200$
	$r = 200/2\pi$
	$r = 100 \times 7/22$
	r = 31.81 meter
iii)	Area of the field = area of the cricle
	= nr ²
	=n×100²/n²
	= 100²/n
	= 70000/22
	=3181.81 m ²
iv)	Cost of ploughing the field = area of the field×cost
	per meter ²
	$= 3181.81 \times 0.50$
	= Rs. 1590.9
V)	Cost of ploughing field @ 1.50/ m ²

	= 3181.81×1.50
	= Rs. 4773
	SOLUTIONS TO OBJECTIVE TYPE OUESTIONS (OTHED THAN
	MCOc)
	MCQS)
Ans 1	Area of a sector of a circle with radius any angle with degrees
	measures is $\frac{\pi r^2 \theta}{360^0}$
Ans 2	The ratio between the circumference and area of a circle of radius
	5cm is 2:5
Ans 3	A chord of a circle of radius 6cm makes an angle 60° at the center.
	Area of minor segment made by the chord is $3(2\pi - 3\sqrt{3})$.
Ans4	If the radius of a circle is $\frac{7}{\sqrt{\pi}}$ cm, then the area of the circle is
	49cm ²
Ans 5	The length of an arc of a sector of a circle with radius r and angle θ
	$\frac{2\pi r\theta}{360^0}$
Ans 6	Perimeter of a quadrant of a circle of radius r 2 r + $\pi r/2$
Ans 7	The number of revolutions made by a circle of radius r to cover a
	distance s is $\frac{s}{2\pi r}$. TRUE
Ans 8	Area of a segment of a circle is less than the area of its
	corresponding sector . FALSE
Ans 9	If the perimeter and the area of a circle are numerically equal, then
	the radius of the circle is 2units . TRUE
Ans 10	$154cm^2$ is the area of circle whose circumference is 44cm.
	(True/False)
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans 1	Solution:
	\Rightarrow Area of circle =301.84cm2 [Given]

	\Rightarrow Area of circle = π r ²
	\Rightarrow 301.84=722× r ²
	$\Rightarrow r^2 = 22301.84 \times 7$
	\Rightarrow r ² = 96.04
	∴ r = 9.8cm
	⇒ Circumference of circle = 2π r
	∴ Circumference of circle =2×722×9.8=61.6cm
Ans 2	1 revolution of the wheel = Circumference of the wheel = 2π r
	= 2 × (22/7) × 35
	= 220 cm
	Speed of the wheel = 66 km/hr
	= (66×1000×100)/60 cm/min
	= 110000 cm/min
	\therefore Number of revolutions in 1 min = 110000/220 = 500
Ans 3	We are given the radius of the circle as 5 cm and the length of the
	arc is 3.5 cm. If the length of the arc is L cm and radius of circle
	is <i>R</i> cm,
	then the area of the sector formed is given by $\frac{LR}{2}$
	Substitute the values of L and R to calculate the area of the sector
Ans 4	Given, <u>central angle</u> , $\theta = 45^{\circ}$
	Radius of circle, r = 28 cm
	We have to find the area of a sector of a circle.
	<u>Area of sector</u> = $\pi r^2 \theta/360^\circ$
	$= (22/7)(28)^2(45^{\circ}/360^{\circ})$
	= (22)(28)(4)(1/8)
	= (22)(28)(1/2)
	= (11)(28)
	= 308 cm ²

	Therefore, the area of the sector is 308 cm ² .
Ans5	Solution: Let the radius of the protractor be r cm. Then, Perimeter = 66 cm = $\pi r + 2r = 66 [$. Perimeter of a semicircle = $\pi r + 2r$] Put the values in linear equation and solve $r = \frac{77}{6}cm$ and diameter = $\frac{77}{3}cm$
Ans 6	Solution: Let the inner and outer radii of the circular track berm and R m respectively. Then, Inner circumference = $2\pi r = 220$ m So r = $35m$ Since the track is 7 m wide everywhere. Therefore, R = Outer radius = $r + 7 = (35 + 7)m = 42$ m \therefore Outer circumference = $2\pi R = 2 \times 227 \times 42m = 264m$ Rate of fencing = $\gtrless 2$ per metre \therefore Total cost of fencing = (Circumference \times Rate) = $\gtrless (264 \times 2) = \gtrless$ 528
Ans 7	Solution: AB be the chord which is subtending an angle 90° at the center O. radius (r) of the circle = 10 cm Area of minor sector = $(90/360^\circ) \times \pi r^2$ = $(1/4) \times (22/7) \times 10^2$ Or, Area of minor sector = 78.5 cm ² Area of major sector = Area of circle – Area of minor sector = (3.14×10^2) -78.5 = 235.5 cm ²

Ans8	Let r be the radius of the circle and 0 be the central angle of the
	sector of the circle Then area of circle = πr^2
	ATQ
	$.\frac{\pi r^2 \theta}{360} = \frac{1\pi r^2}{12}$
	So $\theta = 30^{\circ}$
Ans 9	Inner radius = r
	Outer radius = $r + h$
	So, area of the path $=\pi(r+h)^2-\pi r^2$
	$= \pi [(r+h)^2 - r^2]$
	$=\pi(r+h+r)(r+h-r)$
	=πh(2r+h)
Ans 10	Arc = 5π
	Area of sector = 20π
	Since , area $=\frac{lr}{2}$
	Hence the radius of the circle is 8cm
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans 1	The radius of 1^{st} circle, $r_1 = 21/2$ cm (as diameter D is given as 21 cm)
	So, area of gold region = $\pi r_1^2 = \pi (10.5)^2 = 346.5 \text{ cm}^2$
	Now, it is given that each of the other bands is 10.5 cm wide,
	So, the radius of 2^{nd} circle, $r_2 = 10.5$ cm+10.5cm = 21 cm
	Thus,
	: Area of red region = Area of 2^{nd} circle – Area of gold region = $(\pi r_2^2 - 346.5)$ cm ²
	= $(\pi(21)^2 - 346.5)$ cm ²
	= 1386 - 346.5

	$= 1039.5 \text{ cm}^2$
	Similarly,
	The radius of 3^{rd} circle, $r_3 = 21 \text{ cm} + 10.5 \text{ cm} = 31.5 \text{ cm}$
	The radius of 4^{th} circle, $r_4 = 31.5 \text{ cm} + 10.5 \text{ cm} = 42 \text{ cm}$
	The Radius of 5^{th} circle, $r_5 = 42 \text{ cm} + 10.5 \text{ cm} = 52.5 \text{ cm}$
	For the area of n th region,
	A = Area of circle n – Area of circle $(n-1)$
	\therefore Area of blue region (n=3) = Area of third circle – Area of second circle
	= π(31.5) ² – 1386 cm ²
	= 3118.5 – 1386 cm ²
	$= 1732.5 \text{ cm}^2$
	\therefore Area of black region (n=4) = Area of fourth circle – Area of third circle
	= π(42) ² – 1386 cm ²
	$= 5544 - 3118.5 \text{ cm}^2$
	$= 2425.5 \text{ cm}^2$
	\therefore Area of white region (n=5) = Area of fifth circle – Area of fourth circle
	= π(52.5) ² – 5544 cm ²
	$= 8662.5 - 5544 \text{ cm}^2$
	$= 3118.5 \text{ cm}^2$
2	Length of the fence (in metres) = Total cost/Rate = 5280/24 = 220
	So, the circumference of the field = 220 m
	If r metres is the radius of the field, then $2\pi r = 220$

Ans

$2 \times (22/7) \times r = 220$
r = (220 × 7)/ (2 × 22)
r = 35
Hence, the radius of the field $= 35 \text{ m}$
Area of the field = πr^2
= (22/7) × 35 × 35
$= 22 \times 5 \times 35 \text{ m}^2$
= 3850 sq. m.
Cost of ploughing 1 m ² of the field = Rs. 0.50
So, the total cost of ploughing the field = $3850 \times \text{Rs.} 0.50 = \text{Rs.}$ 1925
Radius of the incircle $r = $ Area of triangle/semi-perimeter
In the question, it is given that area of the incircle = 154 cm^2
So, π × r ² = 154
Or, r = 7 cm
Now, assume the length of each arm of the equilateral triangle to be "x" cm
So, the semi-perimeter of the equilateral triangle = $(3x/2)$ cm
And, the area of the equilateral triangle = $(\sqrt{3}/4) \times x^2$
We know, r = Area of triangle/semi-perimeter
So, $r = [x^2(\sqrt{3}/4)/(3x/2)]$
$=>7 = \sqrt{3x/6}$
Or, x = $42/\sqrt{3}$
Multiply both numerator and denominator by $\sqrt{3}$
So, x = $42\sqrt{3}/3 = 14\sqrt{3}$ cm

	Now, the perimeter of an equilateral triangle will be = $3x = 3 \times 14\sqrt{3}$
	= 72.7 cm.
Ans4	Let "r" be the radius of the circle and "d" be the length of each
	diagonal of the square.
	We know,
	Length of the diagonal of a square = side (s) $\times \sqrt{2}$
	So,
	d = 2r
	And, s × $\sqrt{2} = 2r$
	Or, s = $\sqrt{2}$ r
	We know, the area of the square = s^2
	Thus, the area of the square = $(\sqrt{2}r)^2 = 2r^2$
	Now, the area of the circle = $\pi \times r^2$
	: Area of the circle : area of the square = $\pi \times r^2$: $2r^2 = \pi$: 2
	So, the ratio of the area of the circle and the square is π : 2.
Ans 5	Solution
	Let r be the radius of the circle and AB be the chord, which subtend
	angle of 90 at centre O. AB = 5 cm in the right angled triangle OAB,
	using Pythagoras theorem:
	find value of r
	$r=5/\sqrt{2}$ cm
	The area of the minor segment (shaded area) = area of the sector OAB - area of the triangle OAB

	and
	The area of the major segment = area of the circle - area of
	the minor segment
	$\frac{25}{4}(\pi+2)cm^2$
	4
Ans 6	Radius of the larger circle, $R = 21 \text{ cm}$
	Radius of the smaller circle, $r = 7 \text{ cm}$
	Angle made by sectors of both concentric
	$= 30^{\circ}$
	Area of the larger sector = $7cm^{30}$
	(30°/360°)×⊓R ² cm ²
	$= (1/12) \times (22/7) \times 21^2 \text{ cm}^2$
	= 231/2cm ²
	Area of the smaller circle = $(30^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$
	$= 1/12 \times 22/7 \times 7^2 \text{ cm}^2$
	=77/6 cm ²
	Area of the shaded region = $(231/2) - (77/6) \text{ cm}^2$
	$= 616/6 \text{ cm}^2 = 308/3 \text{cm}^2$
Ans 7	Area of the segment AYB = Area of sector OAYB – Area of Δ OAB
	(1)
	Area of the sector OAYB = $(120/360) \times (22/7) \times 21 \times 21 = 462$
	cm ² (2)
	Draw OM ⊥ AB. 21 cm 60° 60° 21 cm
	OA = OB (radius)
	Therefore, by RHS congruence, Δ AMO $\cong \Delta$ BMO.
	M is the mid-point of AB and
	$\angle AOM = \angle BOM = (1/2) \times 120^{\circ} = 60^{\circ}$

	Let OM = x cm
	In triangle OMA,
	$OM/OA = \cos 60^{\circ}$
	$x/21 = \frac{1}{2}$
	x = 21/2
	OM = 21/2 cm
	Similarly, AM/OA = sin 60°
	$AM/21 = \sqrt{3}/2$
	$AM = 21\sqrt{3}/2 \text{ cm}$
	$AB = 2 AM = 2 (21\sqrt{3}/2) = 21\sqrt{3} cm$
	Area of triangle OAB = $(\frac{1}{2}) \times AB \times OM$
	$= (\frac{1}{2}) \times 21\sqrt{3} \times (21/2) = (441/4)\sqrt{3} \text{ cm}^2 \dots (3)$
	From (1), (2) and (3),
	Area of the segment AYB = $[462 - (441/4)\sqrt{3}]$ cm ²
Ans 8	Angle made by sector = 40°,
	Radius the inner circle = $r = 7$ cm, and
	Radius of the outer circle = $R = 14$ cm
	We know,
	Area of the sector = $(\theta/360^{\circ}) \times \pi r^2$
	So, Area of OAC = $(40^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$
	$= 68.44 \text{ cm}^2$
	Area of the sector OBD = $(40^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$
	$= (1/9) \times (22/7) \times 7^2 = 17.11 \text{ cm}^2$
	Now, area of the shaded region ABDC = Area of OAC – Area of the OBD $\label{eq:obs}$

	= $68.44 \text{ cm}^2 - 17.11 \text{ cm}^2 = 51.33 \text{ cm}^2$
Ans 9	Total number of equal designs = 6
	AOB= 360°/6 = 60°
	Radius of the cover = 28 cm
	Cost of making design = $₹ 0.35$ per cm ²
	Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is 60°, Δ AOB is an equilateral triangle. So, its area will be $(\sqrt{3}/4) \times a^2$ sq. units
	Here, a = OA
	∴ Area of equilateral $\triangle AOB = (\sqrt{3}/4) \times 28^2 = 333.2 \text{ cm}^2$
	Area of sector ACB = $(60^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$
	$= 410.66 \text{ cm}^2$
	So, area of a single design = area of sector ACB – area of ΔAOB
	= $410.66 \text{ cm}^2 - 333.2 \text{ cm}^2 = 77.46 \text{ cm}^2$
	: Area of 6 designs = $6 \times 77.46 \text{ cm}^2 = 464.76 \text{ cm}^2$
	So, total cost of making design = 464.76 cm ² ×Rs.0.35 per cm ²
	= Rs. 162.66
Ans 10	Radius of front wheel =40cm=25 m
	Circumference of the front wheel = $(2\pi \times 25)$ m=4 π 5
	Distance covered by the front wheel in 800
	revolutions = $(4\pi5 \times 800)$ m= (640π) m
	Radius of the rear wheel = 1 m
	Circumference of the rear wheel = $(2\pi \times 1)=2\pi$ m
	Therefore, Required number of revolution $=\frac{640\pi}{2\pi}=320$

CHAPTER: 13

SURFACE AREA AND VOLUMES

	COMPETENCY BASED QUESTIONS
Q1	If a cone is cut parallel to the base of it by a plane in two parts,
	then the shape of the top of the cone will be a:
	(a) Sphere
	(b) Cube
	(c) Cone itself
	(d) Cylinder
Q2	If r is the radius of the sphere, then the surface area of the
	sphere is given by;
	(a) 4 п r ²
	(b) 2 п r ²
	(с) п r ²
	(d) 4/3 п r ²
Q3	If we change the shape of an object from a sphere to a cylinder,
	then the volume of cylinder will
	(a) Increase
	(b) Decrease
	(c) Remains unchanged
	(d) Doubles
Q4	Fifteen solid spheres are made by melting a solid metallic cone of base diameter 2cm and height 15cm. The radius of each sphere is:
	(a) ½
	(b) ¼
	(c) $1/^{3}\sqrt{2}$
	(d) 1/ ³ √4

Q 5	The radius of the top and bottom of a bucket of slant height 35
	cm are 25 cm and 8 cm. The curved surface of the bucket is:
	(a) 4000 sq.cm
	(b) 3500 sq.cm
	(c) 3630 sq.cm
	(d) 3750 sq.cm
Q 6	If a cylinder is covered by two hemispheres shaped lid of equal
	shape, then the total curved surface area of the new object will
	be
	(a) 4пrh + 2пr ²
	(b) 4πrh – 2πr ²
	(c) 2пrh + 4пr ²
	(d) 2nrh + 4nr
Q 7	A tank is made of the shape of a cylinder with a hemispherical
	depression at one end. The height of the cylinder is 1.45 m and
	radius is 30 cm. The total surface area of the tank is:
	(a) 30 m
	(b) 3.3 m
	(c) 30.3 m
	(d) 3300 m
Q 8	If we join two hemispheres of same radius along their bases,
	then we get a:
	(a) Cone
	(b) Cylinder
	(c) Sphere
	(d) Cuboid
Q 9	(d) Cuboid A cylindrical pencil sharpened at one edge is the combination of

	(a) a cone and a cylinder
	(b) frustum of a cone and a cylinder
	(c) a hemisphere and a cylinder
	(d) two cylinders
Q10	A hollow cube of internal edge 22 cm is filled with spherical marbles of
	diameter 0.5 cm and it is assumed that 1/8 space of the cube remains
	unfilled. Then the number of marbles that the cube can
	(a) 142296
	(b) 142396
	(c) 142496
	(d) 142596
Q 11	A solid piece of iron in the form of a cuboid of dimensions 49 cm $ imes$ 33
	cm \times 24 cm, is moulded to form a solid sphere. The radius of the
	sphere is
	(a) 21 cm
	(b) 23 cm
	(c) 25 cm
	(d) 19 cm
Q 12	The diameters of the two circular ends of the bucket are 44 cm and 24 cm. The backet of the bucket is
	(a) 32.7 litres
	(b) 33.7 litres
	(c) 34.7 litres
	(d) 31.7 litres
Q 13	Two identical solid cubes of side a are joined end to end. Then the total surface area of the resulting cuboid is

	(a) 12a ²
	(b) 10a ²
	(c) 8a ²
	(d) 11a ²
Q 14	A solid cylinder of radius r and height h is placed over another cylinder
	of same height and radius. The total surface area of the shape so
	formed is
	(a) 4πrh + 4πr ²
	(b) 2πrh + 4πr ²
	(c) 2пrh + 2пr ²
	(d) 4πrh + 2πr ²
Q 15	The number of shots each having diameter 3 cm can be made from a cuboidal lead solid of dimensions 9 cm \times 11 cm \times 12 cm is approximately equal to
	(a) 84
	(b) 90
	(c) 92
	(d) 80
Q 16	Two identical solid hemispheres of equal base radius r cm are stuck together along their bases. The total surface area of the combination is
	(а) 6пr ²
	(b) 5пr ²
	(с) 4пr ²
	(d) 3пr ²
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q 1	Adventure camps are the perfect place for the children to practice
	decision making for themselves without parents and teachers guiding

their every move. Some students of a school reached for adventure at Sakleshpur. At the camp, the waiters served some students with a welcome drink in a cylindrical glass and some students in a hemispherical cup whose dimensions are shown below. After that they went for a jungle trek. The jungle trek was enjoyable but tiring. As dusk fell, it was time to take shelter. Each group of four students was given a canvas of area 551m2 . Each group had to make a conical tent to accommodate all the four students. Assuming that all the stitching and wasting incurred while cutting, would amount to 1m2 , the students put the tents. The radius of the tent is 7m.

(ii)	The volume of hemispherical cup is
	a) 18.67 cm ³
	b) 89.83 cm ³
	c) 172.25 cm ³
	d) 210.60 cm ³
(iii)	Which container had more juice and by how much?
	a) Hemispherical cup, 195 cm ³
	b) Cylindrical glass, 207 cm ³
	c) Hemispherical cup, 280.85 cm ³
	d) Cylindrical glass, 314.42 cm ³
(iv)	The height of the conical tent prepared to accommodate four students
	IS
	a) 18m
	b) 10m
	c) 24m
	d) 14m
(v)	How much space on the ground is occupied by each student in the
	conical tent
	a) 54 m ²
	b) 38.5 m ²
	c) 86 m ²
	d) 24 m ²

Q 2	
	The Great Stupa at Sanchi is one of the oldest stone structures in India, and an important monument of Indian Architecture. It was originally commissioned by the emperor Ashoka in the 3rd century BCE. Its nucleus was a simple hemispherical brick structure built over the relics of the BuddhaIt is a perfect example of combination of solid figures. A big hemispherical dome with a cuboidal structure mounted on it. (Take $\pi = 22/7$)
(i)	Calculate the volume of the hemispherical dome if the height of the dome is 21 m – a) 19404 cu. m b) 2000 cu .m c) 15000 cu. M d) 19000 cu. M

(ii)	The formula to find the Volume of Sphere is -
	а) 2/3 пг ³
	b) 4/3 пr ³
	с) 4 пr ²
	d) 2 пr ²
(iii)	The cloth require to cover the hemispherical dome if the radius of its
	base is 14m is
	a) 1222 sq.m
	b) 1232 sq.m
	c) 1200 sq.m
	d) 1400 sq.m
(iv)	The total surface area of the combined figure i.e. hemispherical dome
	with radius 14m and cuboidal shaped top with dimensions 8m 6m 4m is
	a)1200 sq. m
	b) 1232 sq. m
	c) 1392 sq.m
	d) 1932 sq. m
(v)	The volume of the cuboidal shaped top is with dimensions mentioned in question 4
	a) 182.45 m ³
	b) 282.45 m ³
	c) 292 m ³
	d) 192 m ³

Q 3	On a Sunday, your Parents took you to a fair. You could see lot of toys
	displayed, and you wanted them to buy a RUBIK's cube and strawberry
	ice-cream for you. Observe the figures and answer the questions: -
(i)	The length of the diagonal if each edge measures 6cm is
	a) 3√3
	b) 3√6
	c) √12
	d) 6√3
(ii)	Volume of the solid figure if the length of the edge is 7cm is
	a)256 cm ³
	b) 196 cm ³
	c) 343 cm ³
	d) 434 cm ³
(iii)	What is the curved surface area of hemisphere (ice cream) if the base
	radius is 7cm?
	a) 309 cm ²
	b) 308 cm ²
	c) 803 cm ²
	d) 903 cm ²

(iv)	Slant height of a co	ne if the radius is 7cm and the height is 24 cm
	a) 26cm	
	b) 25 cm	
	c) 52 cm	
	d) 62cm	
(v)	The total surface ar	ea of cone with hemispherical ice cream is
	a) 858 cm ²	
	b) 885 cm ²	
	c) 588 cm ²	
	d) 855 cm ²	
	, 	
Q 4	To make the learnin	ng process more interesting, creative, and
	innovative, Amayra	's class teacher brings clay in the classroom, to
	teach the topic Surf	ace Areas and Volumes. With clay, she forms a
	cylinder of radius 6	cm and height 8 cm. Then she molds the cylinder
	into a sphere and a	sks some questions to students.
	2.	F C
(i)	The radius of the sp	here so formed is
	(a) 4 cm	(b) 6 cm
	(c) 7 cm	(d) 8 cm
(ii)	The volume of the s	sphere so formed is
	(a) 905.14 cm ³	(b) 903.27 cm ³
	(c) 1296.5 cm ³	(d) 1156.63 cm ³

(iii)	Find the ratio of the v	plume of the sphere to the volume of a cylinder.
	(a) 2 : 1	(b) 1 : 2
	(c) 1 : 1	(d) 3 : 1
(iv)	Total surface area of t	he cylinder is
	(a) 528 cm ²	(b) 756 cm ²
	(c) 625 cm ²	(d) 636 cm ²
(v)	During the conversion	of a solid from one shape to another the volume
	of new shape will	
	(a) be an increase	(b) be decrease
	(c) remain unaltered	(d) be double
Q 5	One day Rinku was go on wood. He found that same diameter from a base radius is 7 cm. W Rinkus mind. Help Rin	ing home from school, saw a carpenter working at he is carving out a cone of same height and cylinder. The height of the cylinder is 24 ern and /hile watching this, some questions came into ku to find the answer of the following questions.
(i)	After carving out cone (a) Volume of the cylin (b) Height of the cylin (c) Volume of cylindric (d) Radius of the cylin	e from the cylinder, ndrical wood will decrease. drical wood will increase. cal wood will increase. drical wood will decrease.

(ii)	Find the slant height of the conical cavity so formed.
	(a) 28 cm(b) 38 cm(c) 35 cm(d) 25 cm
(iii)	The curved surface area of the conical cavity so formed is
	(a) 250 cm ² (b) 550 cm ² (c) 350 cm ² (d) 450 cm ²
(iv)	External curved surface area of the cylinder is
	(a) 876 cm ² (b) 1250 cm ² (c) 1056 cm ² (d) 1025 cm ²
(v)	Volume of conical cavity is
	(a) 1232 cm ³ (b) 1248 cm ³ (c) 1380 cm ³ (d) 999 cm ³
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	The length of the diagonal of a cube that can be inscribed in a sphere of
	radius 7.5 cm is
Q 2	The volume of a hemisphere is of the volume of a
	cylinder if its height and radius are same as of cylinder.
Q 3	If the volume and the surface area of a solid sphere are numerically
	equal, then its radius is
Q 4	Solid figures are while plane figures are
Q 5	If the heights af the two cylinders are equal and their radii is in the
	ratio 7:5 then the ratio of their volumes is
Q 6	If the total surface area of a cube is $\frac{50}{3}$ m ² , then its side is $\frac{5}{3}$ m. (T/F)
0.7	If we double the radius of a bemisphere, then its surface area also gets
<i>Y</i>	doubled. (T/F)
0.0	Area is the length of hours dam, of the plane closed figure $(T(\Gamma))$
Q 8	Area is the length of boundary of the plane closed figure. (1/F)
Q 9	A solid ball is exactly fitted into cubical box of side a. the volume of the
	cube is $\frac{4}{3}\pi a^{3}$.(T/F)
Q 10	If the base area and volume of the cone are numerically equal then its
	height is 3 cm.(T/F)

	SHORT ANSWER TYPE QUESTIONS
Q 1	A canal is 300 cm wide and 120 cm deep. The water in the canal is
	flowing at a speed of 20 km/h. How much area will it irrigate in 20
	minutes if 8 cm of standing water is desired?
Q 2	Two cones have their heights in ratio 1 : 3 and radii in the ratio 3 :1.
	What is the ratio of their volumes?
Q 3	A cubical ice-cream brick of edge 22 cm is to be distributed among
	some children by filling ice-cream cones of radius 2 cm and height 7 cm
	up to its brim. How many children will get the ice cream cones?
Q 4	Three cubes of a metal whose edges are in the ratio 3:4:5 are melted
	and converted into a single cube whose diagonal is $12\sqrt{3}$ cm. Find the
	edges of the three cubes.
Q 5	Find the number of solid spheres each of diameter 6 cm that can be
	made by melting a solid metal cylinder of height 45 cm and diameter 4
	cm.
Q 6	A cone of height 24 cm and radius of base 6 cm is made up of
	modelling clay. A child reshapes it in the form of a sphere. Find the
	radius of the sphere.
Q 7	A medicine capsule is in the shape of a cylinder with two hemispheres
	stuck to each of its ends (Fig). The length of the entire capsule is 14
	mm and the diameter of the capsule is 5 mm. Find its surface area.
	28 m
	←2 m→ 2.1 m
	<4 m →
Q 8	A wooden article was made by scooping out a hemisphere from each
	end of a solid cylinder, as shown in Fig. If the height of the cylinder is

	10 cm, and its base is of radius 3.5 cm, find the total surface area of
	the article.
Q 9	Mayank made a bird-bath for his garden in the shape of a cylinder with
	a hemispherical depression at one end (Fig). The height of the cylinder
	is 1.45 m and its radius is 30 cm. 30 cm Find the total surface area of
	the bird-bath. [Take $\pi = \frac{22}{7}$]
Q 10	A juice seller was serving his customers using glasses. The inner
	diameter of the cylindrical glass was 5 cm, but the bottom of the glass
	had a hemispherical raised portion which reduced the capacity of the
	glass. If the height of a glass was 10 cm, find the apparent capacity of
	the glass and its actual capacity. (Use $\pi = 3.14$).
	LONG ANSWER TYPE QUESTIONS
Q 1	Rasheed got a playing top (lattu) as his birthday present, which
	surprisingly had no colour on it. He wanted to colour it with his crayons.
	The top is shaped like a cone surmounted by a hemisphere. The entire
	top is 5 cm in height, and the diameter of the top is 3.5 cm. Find the
	area he has to colour. (Take $\pi = 22/7$)
Q 2	Mayank made a bird-bath for his garden in the shape of a cylinder with
	a hemispherical depression at one end, as shown in the figure. The
	height of the cylinder is 1.45 m, and its radius is 30 cm. Find the total
	surface area of the bird-bath. (Take $\pi = 22/7$)

2 cubes each of volume 64 cm^3 are joined end to end. Find the surface
area of the resulting cuboid.
A tent is in the shape of a cylinder surmounted by a conical top. If the
height and diameter of the cylindrical part are 2.1 m and 4 m
respectively, and the slant height of the top is 2.8 m, find the area of
the canvas used for making the tent. Also, find the cost of the canvas
of the tent at the rate of Rs. 500 per m^2 . (Note that the base of the
tent will not be covered with canvas.)
A solid toy is in the form of a hemisphere surmounted by a right
circular cone. The height of the cone is 2 cm, and the diameter of the
base is 4 cm. Determine the volume of the toy. If a right circular
cylinder circumscribes the toy, find the difference between the volumes
of the cylinder and the toy. (Take $\pi = 3.14$)
Selvi's house has an overhead tank in the shape of a cylinder. This is
filled by pumping water from a sump (an underground tank) which is in
The by pumping water from a sump (an underground tank) which is in
the shape of a cubold. The sump has dimensions 1.57 m × 1.44 m ×
95cm. The overhead tank has a radius of 60 cm and a height of 95 cm.
Find the height of the water left in the sump after the overhead tank
has been completely filled with water from the sump which had been
full. Compare the capacity of the tank with that of the sump. (Use π =
3.14)
Metallic spheres of radii 6 cm 8 cm and 10 cm, respectively, are
metallic spheres of radii o cin, o cin and to cin, respectively, are
melted to form a single solid sphere. Find the radius of the resulting
sphere.
A copper wire, 3 mm in diameter is wound about a cylinder whose
length is 12 cm and diameter 10 cm, so as to cover the curved surface
of the cylinder. Find the length and mass of the wire, assuming the
density of copper to be 8.88 a per cm ³ .
A cistern, internally measuring 150 cm x 120 cm x 110 cm has 129600
cm ³ of water in it. Porous bricks are placed in the water until the cistern
is full to the brim. Each brick absorbs one-seventeenth of its own

	volume of water. How many bricks can be put in without overflowing the water, each brick being 22.5 cm x 7.5 cm x 6.5 cm?
Q 10	Determine the ratio of the volume of a cube to that of a sphere which with exactly fit inside the cube.

CHAPTER: 13

SURFACE AREAS AND VOLUME

SOLUTIONS OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(c) Cone itself
	Explanation: If we cut a cone into two parts parallel to the base, then
	the shape of the upper part remains the same.
Ans 2	(a) 4 п r ²
	If r is the radius of the sphere, then the surface area of the sphere is
	given by 4 п r ² .
Ans 3	(c) Remains unchanged
Ans 4	(d) 1/ ³ √4
	Explanation: Volume of 15 spheres = Volume of a cone
	15 x (4/3) п r ³ = ⅓ пr ² h
	5×4 п r ³ = ⅓ п 1 ² (15)
	$20r^3 = 5$
	$r^3 = 5/20 = \frac{1}{4}$
	$r = 1/^3 \sqrt{4}$
Ans 5	(c) 3630 sq.cm
	Explanation: Curved surface of bucket = $\pi(R_1 + R_2) \times R_1$ slant height (I)
	Curved Surface = $(22/7) \times (25 + 8) \times 35$
	CSA = 22 x 33 x 5 = 3630 sq.cm.
Ans 6	(с) 2пrh + 4пr ²
	Explanation: Curved surface area of cylinder = $2\pi rh$
	The curved surface area of hemisphere = $2\pi r^2$
	Here, we have two hemispheres.
1	

	So, total curved surface area = $2\pi rh + 2(2\pi r^2) = 2\pi rh + 4\pi r^2$
Ans 7	(b) 3.3 m
	Explanation: Total surface area of tank = CSA of cylinder + CSA of hemisphere
	$= 2\pi rh + 2\pi r^2 = 2\pi r(h + r)$
	= 2 x 22/7 x 30(145 + 30) cm ²
	=33000 cm ²
	$= 3.3 \text{ m}^2$
Ans 8	(c) Sphere
	If we join two hemispheres of same radius along their bases, then we get a Sphere.
Ans 9	(a) a cone and a cylinder
	A cylindrical pencil sharpened at one edge is the combination of a cone and a cylinder.
	= Cylinder + Cone
	© Byjus.com
Ans10	(a) 142296
	Explanation:
	Volume of cube = $223 = 10648 \text{ cm}^3$
	Volume of cube that remains unfilled = $(1/8) \times 10648 = 1331 \text{ cm}^3$
	volume occupied by spherical marbles = $10648 - 1331 = 9317 \text{ cm}^3$
	Radius of the spherical marble = $0.5/2 = 0.25$ cm = $1/4$ cm
	Volume of 1 spherical marble = $(4/3) \times (22/7) \times (1/4)3 = 11/168 \text{ cm}^3$
	Numbers of spherical marbles = $n = 9317 \times (11/168) = 142296$
Ans11	(a) 21 cm
-------	--
	Explanation:
	For the given cuboid,
	Length, $I = 49$ cm
	Breadth, $b = 33 \text{ cm}$
	Height, h = 24 cm
	Volume of cube = $49 \times 33 \times 24$ cm3
	Let r be the radius of the sphere.
	Volume of sphere = $4/3 \ \pi r^3$
	Volume of cuboid = volume of sphere moulded
	49 × 33 × 24 = 4/3 πr ³
	$\Rightarrow \pi r^3 = 29106$
	\Rightarrow r ³ = 29106 × (22/7)
	\Rightarrow r ³ = 9261
	\Rightarrow r ³ = (21) ³
	\Rightarrow r = 21 cm
	Hence, the radius of sphere is 21 cm
Ans12	(a) 32.7 litres
	Explanation:
	Given,
	The height of the bucket = $h = 35$ cm
	Diameter of one circular end of bucket = 44 cm
	Then the radius $R = 22 \text{ cm}$
	Diameter of another end = 24 cm
	Then the radius $r = 12$ cm

	We know that Volume of the bucket = $(1/3)\pi h[R^2 + r^2 + Rr]$
	$= (1/3) \times (22/7) \times 35 \times [(22)^2 + (12)^2 + 22 \times 12]$
	= (35/3) × (22/7) × (484 + 144 + 264)
	$= (5 \times 22 \times 892)/3$
	= 32706.6 cm ³
	= 32.7 litres.
Ans13	(b) 10a ²
	Explanation:
	The total surface area of a cube having side $a = 6a^2$
	If two identical faces of side a are joined together, then the total
	surface area of the cuboid so formed is $10a^2$.
Ans14	: (d) 4nrh + 2nr ²
	Explanation:
	We know that, The total surface area of cylinder = $2\pi rh + 2\pi r^2$
	When one cylinder is placed over the other cylinder of same height and
	radius, then height of the new cylinder will be 2h and radius will be r.
	Thus, the total surface area of the shape so formed = $2\pi r(2h) + 2\pi r^2 = 4\pi rh + 2\pi r^2$
Ans15	(a) 84
	Explanation:
	Volume of cuboidal lead solid = 9 cm \times 11 cm \times 12 cm = 1188 cm ³
	Radius of lead shot = $3/2$ cm = 1.5 cm
	Volume of each shot = $(4/3)\pi r^3$
	$= (4/3) \times (22/7) \times 1.5 \times 1.5 \times 1.5$
	$= 14.143 \text{ cm}^3$
	Number of lead shots can be made = 1188/14.143 = 84 (approx.)

Ans16	(с) 4пг ²
	Explanation:
	When two hemispheres are joined together along their bases, a sphere
	of the same base radius is formed.
	Curved Surface Area of a sphere = $4\pi r^2$
	4.25 cm 8.5 cm
	Now, the volume of this vessel = Volume of cylinder + Volume of a sphere
	$= \pi \times (1)^2 \times 8 + (4/3) \pi (4.25)^3$
	= 25.12 + 321.6
	$= 346.67 \text{ cm}^3$
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
1(i)	d) 404.25 cm ³
(ii)	b) 89.83 cm ³
(iii)	d) Cylindrical glass, 314.42 cm ³
(iv)	c) 24m
(v)	b) 38.5 m ²
2(i)	a) 19404 cu. M
(ii)	b) 4/3 пr ³

(iii)	b) 1232 sq.m
(iv)	c) 1392 sq.m
(v)	d) 192 m ³
3(i)	d) 6√3
(ii)	c) 343 cm ³
(iii)	b) 308 cm ²
(iv)	b) 25 cm
(v)	a) 858 cm ²
4(i)	(b) 6 cm
(ii)	(a) 905.14 cm ³
(iii)	(c) 1 : 1
(iv)	(a) 528 cm ²
(v)	(c) remain unaltered
5(i)	(b) Height of the cylindrical wood will increase.
(ii)	(a) 28 cm
(iii)	(c) 350 cm ²
(iv)	(a) 876 cm ²
(v)	(c) 1380 cm ³

	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN
	MCQs)
Ans 1	15 cm
Ans 2	$\frac{2}{3}$

Ans 3	3 units
Ans 4	3 dimensional, 2-dimensional
Ans 5	49:25
Ans 6	True
Ans 7	False
Ans 8	False
Ans 9	False
Ans10	True
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans 1	The volume of water flows in the canal in one hour = width of the canal \times depth
	of the canal \times speed of the canal water = 3 \times 1.2 \times 20 \times 1000 m^3
	= 72000 m ³
	In 20 minutes the volume of water = $(72000 \times 20)/60 = 24000 \text{ m}^3$
	Area irrigated in 20 minutes, if 8 cm, i.e., 0.08 m standing water is required
	=24000/0.08
	$= 300000 \text{ m}^2$
	= 30 hectares
Ans 2	Given,
	Ratio of heights of two cones = $1:3$
	Ratio of radii = 3 : 1
	Let h and 3h be the height of two cones.

	Also, 3r and r be the corresponding radii of cones.
	So, $r_1 = 3r$, $h_1 = h$, $r_2 = r$, $h_2 = 3h$.
	Ratio of volumes = $[(1/3)\pi r_1^2 h_1]/[(1/3)\pi r_2^2 h_2]$
	$= [(3r)^2 h]/[r^2 (3h)]$
	$= (9r^{2}h)/(3r^{2}h)$
	= 3/1
	Hence, the ratio of volumes = $3 : 1$
Ans 3	Let n be the number of ice-cream cones.
	Volume of cubical ice-cream brick = $22 \text{ cm} \times 22 \text{ cm} \times 22 \text{ cm}$
	Radius of cone = $r = 2$ cm
	Height of cone = $h = 7$ cm
	Volume of cone = $(1/3)\pi r^2 h = (1/3) \times (22/7) \times 2 \times 2 \times 7$
	So,
	$n \times Volume of one cone = Volume of cubical ice-cream brick$
	$n \times (1/3) \times (22/7) \times 2 \times 2 \times 7 = 22 \times 22 \times 22$
	$n \times (1/3) \times 4 = 22 \times 22$
	$n = (22 \times 22 \times 3)/4$
	n = 363
	Therefore, 363 children will get the ice cream cones.
Ans 4	Let the edges of three cubes (in cm) be 3x, 4x and 5x, respectively.
	Volume of the cubes after melting is = $(3x)^3 + (4x)^3 + (5x)^3 = 216x^3 \text{ cm}^3$
	Let a be the side of a new cube so formed after melting.

	Therefore, $a^3 = 216x^3$
	So, a = 6x
	Given that, diagonal of a single cube = $12\sqrt{3}$ cm
	i.e. $\sqrt{a^2 + a^2 + a^2} = 12\sqrt{3}$
	$a\sqrt{3} = 12\sqrt{3}$
	Therefore, $a = 12$
	Thus, 12 = 6x
	x = 2
	Now, $3x = 3 \times 2 = 6$
	$4x = 4 \times 2 = 8$
	$5x = 5 \times 2 = 10$
	Therefore, the edges of the three cubes are 6 cm, 8 cm and 10 cm,
	respectively.
Ans 5	Given,
	Diameter of solid sphere = 6 cm
	Diameter of cylinder = 4 cm
	Height of cylinder = $h = 45$ cm
	Radius of sphere = $r_1 = 6/2 = 3$ cm
	Radius of cylinder = $r_2 = 4/2 = 2$ cm
	Let n be the number of spheres.
	$n \times Volume of one sphere = Volume of cylinder$
	n × Volume of one sphere = Volume of cylinder n × $(4/3)\pi r_1^3 = \pi r_2^2 h$

	n × 9 = 45
	n = 45/9
	n = 5
Ans 6	The volume of cone = $(\frac{1}{3}) \times \pi \times 6 \times 6 \times 24 \text{ cm}^3$
	If r is the radius of the sphere, then its volume is $(4/3) \pi r^3$.
	Since the volume of clay in the form of the cone and the sphere remains the same, we
	Have (4/3) $\pi r^3 = (\frac{1}{3}) \times \pi \times 6 \times 6 \times 24 \text{ cm}^3$
	$r^3 = 3 \times 3 \times 24 = 3^3 \times 2^3$
	So, r = 3 × 2 = 6
Ans 7	Let the radius and height of the cylinder be r cm and h cm respectively.
	Then,
	$r = \frac{5}{2} \text{mm} = 2.5 \text{ mm}$ and $h = \left(14 - 2 \times \frac{5}{2}\right) \text{mm} = 9 \text{ mm}$
	Also, radius of hemisphere $r = \frac{5}{2}$ mm
	Now, Surface area of the capsule
	Curved surface of cylinder + Surface area of two hemispheres $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 5 \text{ mm}$
	$= 2\pi rh + 2 \times 2\pi r^2 = 2\pi r (h + 2r)$
	$= 2 \times \frac{22}{7} \times \frac{5}{2} \times \left(9 + 2 \times \frac{5}{2}\right) = 2 \times \frac{22}{7} \times \frac{5}{2} \times 14 = 220 \text{ mm}^2$
Ans 8	Solution:
	We have, $r = 3.5$ cm and $h = 10$ cm
	I otal surface area of the article
	= Curved surface area of cylinder $+ 2 \times$ Curved surface area of
	$\frac{1}{2} = 2 \frac{1}{2} $
	$= 2 \prod_{n \neq 1} + 2 \times 2 \prod_{r \neq 2} = 2 \prod_{n \neq 2} (n + 2r)$

	This implies that $a^3 = 64 \text{ cm}^3$
	\therefore The side of the cube, i.e. a = 4 cm
	Also, the breadth and length of the resulting cuboid will be 4 cm each while its height will be 8 cm.
	So, the surface area of the cuboid (TSA) = $2(lb + bh + lh)$
	Now, by putting the values, we get,
	$= 2(8 \times 4 + 4 \times 4 + 4 \times 8) \text{ cm}^2$
	$= (2 \times 80) \text{ cm}^2$
	Hence, TSA of the cuboid = 160 cm^2
Ans 4	It is known that a tent is a combination of a cone and a cylinder, as shown below.
	P 2.8 m C C 2 m 2.1 m 2.1 m C 4 m C Byjus.com
	From the question, we know that
	The diameter = $D = 4 m$
	I = 2.8 m (slant height)
	The radius of the cylinder is equal to the radius of the cylinder
	So, $r = 4/2 = 2 m$
	Also, we know the height of the cylinder (h) is 2.1 m

	The radius of the base of the right circular cylinder = $HP = BO = 2 cm$,
	and its height is
	EH = AO + OP = (2 + 2) cm = 4 cm
	So, the volume required = volume of the right circular cylinder – the
	volume of the toy
	= $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³
	$= 25.12 \text{ cm}^3$
	Hence, the required difference between the two volumes = 25.12 cm^3
Ans6	The volume of water in the overhead tank equals the volume of the water removed from the sump.
	Now, the volume of water in the overhead tank (cylinder) = $\pi r^2 h$
	$= 3.14 \times 0.6 \times 0.6 \times 0.95 \text{ m}^3$
	The volume of water in the sump when full = I × b × h = 1.57 × 1.44 × 0.95 m ³
	The volume of water left in the sump after filling the tank
	= $[(1.57 \times 1.44 \times 0.95) - (3.14 \times 0.6 \times 0.6 \times 0.95)] \text{ m}^3 = (1.57 \times 0.6 \times 0.6 \times 0.95 \times 2) \text{ m}^3$
	Height of the water left in the sump = (volume of water left in the sump)/ (I \times b)
	= (1.57× 0.6× 0.6× 0.95 ×2)/ (1.57 ×1.44)
	= 0.475 m
	= 47.5 cm
	Capacity of tank / Capacity of sump = $(3.14 \times 0.6 \times 0.6 \times 0.95)$ / (1.57 × 1.44 × 0.95)
	= 1/2

	Therefore, the capacity of the tank is half the capacity of the sump.
Ans7	For Sphere 1:
	Radius $(r_1) = 6 \text{ cm}$
	:. Volume (V ₁) = (4/3) × π × r_1^3
	For Sphere 2:
	Radius $(r_2) = 8 \text{ cm}$
	:. Volume (V ₂) = (4/3) × π × r_2^3
	For Sphere 3:
	Radius $(r_3) = 10 \text{ cm}$
	:. Volume (V ₃) = (4/3) × π × r_3^3
	Also, let the radius of the resulting sphere be "r"
	Now, Volume of resulting sphere = $V_1 + V_2 + V_3$
	$(4/3) \times \pi \times r^3 = (4/3) \times \pi \times r_1^3 + (4/3) \times \pi \times r_2^3 + (4/3) \times \pi \times r_3^3$
	$r^3 = 6^3 + 8^3 + 10^3$
	$r^3 = 1728$
	r = 12 cm
Ans 8	Abbreviation: CSA = Curved Surface Area
	TSA = Total Surface Area
	V = Volume
	Number of rounds to cover 12 cm i.e. 120 mm $=\frac{120}{3}=40$
	Here, Diameter = 10 cm, Radius $\binom{(r)=\frac{1}{2}}{2}$ cm
	Length of the wire in completing one round = $2\pi r = 2\pi \times 5 = 10\pi$ cm
	Length of the wire in completing 40 rounds = $10\pi \times 40 = 400\pi$ cm

	Radius of the copper wire = $\frac{3}{2}$ mm = $\frac{3}{20}$ cm
	$\therefore \text{ Volume of wire} = \frac{\pi \left(\frac{3}{20}\right)^2 (400\pi)}{9\pi} = \frac{9\pi}{2} \text{ cm}^3$
	\therefore Mass of the wire = $9 \times (3.14)^2 \times 8.88 = 787.98 \text{ g}$
Ans 9	Volume of cistern = $150 \times 120 \times 110 = 1980000 \text{ cm}^3$
	Volume of water = 129600 cm^3
	\therefore Volume of cistern to be filled = 1980000 - 129600 = 1850400 cm ³
	Volume of a brick = $22.5 \times 7.5 \times 6.5 = 1096.875 \text{ cm}^3$
	Let n bricks be needed.
	1096.875
	Then, water absorbed by ⁿ bricks = $\frac{n \times 17}{17}$ cm ³
	1850400×17
	$10^{-1} \frac{10 \times 1096.875}{16 \times 1096.875} = 1792 \text{ (approx.)}$
Ans10	. Let the radius of the sphere which fits exactly into a cube be r units.
	Then length of each edge of cube = $2r$ units
	Let V_1 and V_2 be the volumes of the cube and sphere
	Then $V_1 = (2r)^3$
	$V_2 = \frac{4}{3} \pi r^3$
	$\frac{V_1}{V_2} = \frac{8r^3}{\frac{4}{3}\pi r^3} = \frac{6}{\pi}$
	$V_1: V_2 = 6: \pi$

CHAPTER: 14

STATISTICS

	COMPETENCY BA	SED QUESTIONS									
Q1	The median of set of 9 distinct obse	ervations is 20.5. If each of the									
	largest 4 observations of the set is	increased by 2, then the median of									
	the new set										
	(a) is increased by 2										
	(b) is decreased by 2	is decreased by 2									
	(c) is two times of the original num	s two times of the original number									
	(d) Remains the same as that of th	e original set									
Q2	While computing mean of grouped	data, we assume that the frequencies									
	are										
	(a) evenly distributed over all the o	lasses									
	(b) centred at the classmarks of th	e classes									
	(c) centred at the upper limits of the	ne classes									
	(d) centred at the lower limits of th	e classes									
Q3	Amit grows cucumbers in his farm.	He collects some of them and									
	measures their lengths and represe	ents his data.									
	Length (in mm)	Number of cucumbers									
	110 - 120	10									
	120 - 130	18									
	130 - 140										
	150 - 160	26									
	160 - 170										
	170 – 180	19									
	When calculated using assumed me	ean method, Amit gets the mean									
	length of the cucumber as 147.25 of	cm.									
	Which of the following statement is	true?									
	(a) There are a smaller number	of cucumbers of length (140 – 150)									
	mm than of length (120 – 13	80) mm.									
	(b) There are a smaller number	of cucumbers of length (140 – 150)									
	mm than of length (170 – 18	80) mm.									

	(c) There are a greater number of cucumbers of length (140 – 150)									
	mm th	an of le	ngth (150	– 160) mr	n.					
	(d) There are a greater number of cucumbers of length (140 – 150)									
	mm than of length (130 – 140) mm									
04	The times in	second	s taken h	v 150 athl	etes to run	a 110 m ł	urdle race			
~ '	are tabulated below:									
				112						
	Class	13.8-	14-14.2	14.2-	14.4-	14.6-	14.8-15			
		14		14.4	14.6	14.8				
	Frequency	2	4	5	71	48	20			
	The number	of athle	ces who co	mpleted th	ne race in	less then 1	4.6			
	seconds is									
	(a)11	(b)71	(c)	82	(d) 1	30			
0.5				· · · ·	<u> </u>	· 10				
Q 5	In a frequence	cy distrii	oution, the	mid value	e of a class	is 10 and	the width			
	of the class is	s 6. The	lower limi	t of the cla	ass is :					
	(A) 6	(B)	7	(C) 8		(D) 12				
0.6	The class ma	rks of a	frequency	distributio	on are give	n as follow	IC '			
QU		1 5 01 0	nequency	uistributit	are give		15.			
	15, 20, 25, .									
	The class cor	respond	lina to the	class marl	< 20 is :					
			J							
	a. 12.5 - 17.	5		b. 1	.7.5 - 22.5					
	c. 18.5 - 21.5	5		d. 1	9.5 - 20.5					
07	There are 50	numbe	rs. Each nu	umber is s	ubtracted 1	from 53 an	d the			
	mean of the	number	s so obtain	ed is foun	d to be -3	.5.				
	The mean of	the give	en number	s is :						
	(A) 46.5	(B)	49.5	(C)	53.5	(D)	56.5			
		``								

Q 8	The relationship between mean, median and mode for a moderately
	skewed distribution is
	a) mode = median - 2 mean
	(b) mode = 3 median – 2 mean
	(c) mode = 2 median – 3 mean
	(d) mode = median – mean
Q 9	A car travels from city A to city B, 120 km apart at an average speed of
	50 km/h. It then makes a return trip at an average speed of 60 km/h. It
	covers another 120 km distance at an average speed of 40 km/h. The
	average speed over the entire 360 km will be
	(a) 50km/h
	(b) 120km/h
	(c) $\frac{1800}{37}$ km/h
	(d) None of these
Q10	Let m be the mid-point and I be the upper class limit of a class in a
	continuous frequency distribution. The lower class limit of the class is :
	(A) $2m + 1$ (B) $2m - 1$ (C) $m - 1$ (D) $m - 21$
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q.1	Transport department of a city wants to buy some Electric buses for the
	city. For which they wants to analyse the distance travelled by existing
	public transport buses in a day.
	2
	CALL I I I TO WALL

	The following data shows the distance travelled by 60 existing public										
	transport buses in a day.										
	Daily distance travelled (in 200- 210- 220- 230- 240-										
	km)	209	219	229	239	249					
	Number of buses	4	14	26	10	6					
	Based on the above inform	nation, a	answer	the foll	owing	questio	ns.				
(i)	The upper limit of a class	and low	er limit	of its s	uccee	ding clas	s is differ				
	by										
	a. 9 b. 1	c.10	d.	None c	of thes	е					
(ii)	The median class is										
	(a) 229.5239.5 (b) 230-	239 (c)	220-22	9 (d) 2	219.5-	229.5					
(iii)	The median of the distanc	e travel	led is								
	(a) 222 km (b) 225 km (c)	223 kn	n (d) no	ne of t	hese						
(iv)	If the mode of the distanc	e travel	led is 22	23.78 k	m, th	en mear	of the				
	distance travelled by the b	ous is									
	(a) 225 km (b) 220 km (d	c) 230.2	9 km (d	d) 224.	29 km	า					
Q .2	An electric scooter manufa	acturing	compar	ny wan	ts to d	declare t	he mileage				
	of their electric scooters. F	or this,	they re	corded	l the n	nileage (km/				
	charge) of 50 scooters of t	the sam	e mode	l. Deta	ils of v	which are	e given in				
	the following table.										
	Mileage (km/charge) 10	00-120	120-14	0 140-	160 1	60-180					
	Number of scooters 7		12	18	1	3					

	Based on the above information, answer the following questions.
(i)	The average mileage is
	a. 140km/crg b.150km/crg c.130km/crg d. 144.8km/crg
(ii)	The modal value of the given data is
	(a) 150 (b) 150.91 (c) 145.6 (d) 140.9
(iii)	The median value of the given data is
	(a) 140 (b) 146.67 (c) 130 (d) 136.6
(iv)	Assumed mean method is useful in determining the
	(a) Mean (b) Median (c) Mode (d) All of these
(v)	The manufacturer can claim that the mileage for his scooter is
	a.144km/crg b. 155km/crg c. 165km/crg d. 175km/crg
Q .3	Household income in India was drastically impacted due to the COVID-
	19 lockdown. Most of the companies decided to bring down the salaries
	of the employees by 50%.
	The following table shows the salaries (in percent) received by 25 employees during lockdown
	Salaries received (in percent) 50-60 60-70 70-80 80-90 Number of employees 0 6 9 2

	Based on the above information, answer the following questions
(i)	Total number of persons whose salary is reduced by more than 30%, is
	(a) 10 (b) 20 (c) 25 (d) 15
(ii)	Total number of persons whose salary is reduced by utmost 40%, is
	(a) 15 (b) 10 (c) 16 (d) 8
(iii)	The modal class is
	a.50-60 b.60-70 c.70-80 d.80-90
(iv)	The median class of the given data is
	a.50-60 b.60-70 c.70-80 d.80-90
(v)	The empirical relationship between mean, median and mode is
	a. 3 Median = Mode + 2 Mean b. 3 Median = Mode - 2 Mean
	c. Median = 3 Mode - 2 Mean d. Median = 3 Mode + 2 Mean
Q .4	COVID-19 Pandemic The COVID-19 pandemic, also known as
	coronavirus pandemic, is an ongoing pandemic of coronavirus disease
	caused by the transmission of severe acute respiratory syndrome
	coronavirus 2 (SARS-CoV-2) among humans.

The following tables shows the age distribution of case admitted during a day in two different hospitals

Table 1

									_
	Age (in yea	rs)	5-15	15-25	25-35	35-45	45-55	55-65	
	No. of cases Table 2		6	11	21	23	14	5	-
	Table 2		1						_
	Age (in yea	rs) 5	-15	15-25	25-35	35-45	45-55	55-65	
	No. of cases	cases 8 16 10		42	24	12			
(i)	Refer to tabl	e 1				·			
	The average	age fo	or whic	ch maxim	ium cases	occurre	d is		
	a) 32.24 b) 34.36 c) 36.82 d) 42.24								
(ii)	The upper lir	nit of	modal	class is					
	a) 15 b)	25	c) 35	5 d)	45				
(iii)	The mean o	of the	given	data is					
	a) 26.2 b)) 32.4	C) 33.5	d) 35.4	4			
(iv)	Refer to tabl	e 2							
	The mode of	the g	iven da	ata is					
	a) 41.4	b) 48.2	2	c) 55.3	d)64.	.6			

(v)	The me	dian of the given o	data is								
	a) 32.7	b) 40.2	c) 42.3	d) 48.	6					
Q.5	A petro	l pump owner wan	its to analy	se the	daily	/ need	of diese	l at the			
	pump. I	or this he collecte	ed the data	of veł	nicles	visite	d in 1 hr	. The			
	following frequency distribution table shows the classification of the										
	number of vehicles and quantity of diesel filled in them.										
	Diesel F	filled (in Litres)	3-5	5-7	7-9	9-11	11-13				
	Number	r of vehicles	5	10	10	7	8				
	Decede			6 -11-1							
	Based c	on the above data,	answer the		wing	quest	ions.				
(i)	Which	of the following is	correct?								
	(a)	If x_i and f_i are su	ifficiently si	nall, t	hen d	direct	method i	S			
		appropriate									
		choice for calcula	ating mean			_					
	(b)	If x _i and f _i are su	ifficiently la	rge, tl	nen c	lirect	method is	S			
	(-)	appropriate choic	ce for calcu	lating	mea	n.	- d				
	(C)	If X _i and f _i are su	Ifficiently si	nall, t o for (nen a	assum Iating	ea mean				
	(d)	None of the abo			Laicu	ating	mean.				
(ii)	Average	e diesel required fo	or a vehicle	is							
()	(-) 0 1		roc (c) 7	litroc	(litroc				
(iii)	If appro	vimately 2000 ve	hicles come	s dail	u vatt	$\frac{1}{2}$		n then			
(11)	how mu	ich litres of diesel	the pump s	hould	have	e?					
	(a) 162	00 litres (b) 163	00 litres (c) 106	600 li	tres	(d) 1500	0 litres			
(iv)	The sur	n of upper and lov	ver limit of	media	n cla	ss is					
	(a) 22(l	b) 10(c) 16(d) noi	ne of these								
(v)	If the m	nedian of given da	ta is 8litres	, then	mod	e will	be equal	to			
		lituae (b) 7 7 liture			0 1:+	~~					
	(a) /.5	incres(D) /./ litres	(C) 5.7 litre	s(a)	o iitre	es					

	OB.	JECTI	VE TY	PE QUE	STION	IS	(OTHE	ER 1	THAN MC	Qs)	
Q .1	The mean o	of 50 n	umbers	s is 18,	the ne	w r	nean w	vill I	oe if	each	
	observation	is inc	reased	by 4							
Q .2	The sum of	deviat	tions of	a set c	of value	es {	a,b,c,d	d,e,	f,g.h.i]	≻ n	
	items meas	sured	from 26	5 is -1() and tl	he	sum of	de	viations o	f the value	es
	from 20 is 5	50. Th	e value	of n is		Ar	nd mea	n o	f the item	s is	
Q .3	The curve d	lrawn	by takiı	ng uppe	er limits	s al	ong x-	axi	s and cum	ulative	
	frequency a	long y	-axis is	5		(less th	nan	ogive /mo	ore than	
	ogive)										
Q .4	he mean of	five n	umbers	s is 40.	If one	nur	nber is	s ex	cluded, th	eir mean	
	becomes 28	3. The	exclude	ed num	ber is						
Q .5	The mode is	s alwa	ys one	of the r	number	's ii	n data.	(Ti	rue/False)		
Q .6	The mean	is one	of the	numbei	rs in da	ta.	(True/	/Fal	se)		
Q .7	The mediar	n is alı	ways or	ne of th	e numt	ber	s in da	ta.	(True/Fals	se)	
Q .8	The data 6,	4, 3,	8, 9, 12	2, 13, 9) has m	ea	n 9. (T	rue	/False)		
Q .9	The absciss	a of th	ne point	of inte	ersectio	n o	of the le	ess	than type	and of the	e
	more than t	суре си	umulati	ve freq	uency o	cur	ves of	a g	rouped da	ta gives it	S
Q10	If the arithr	netic r	nean of	f x, x +	3, x +	6,	x + 9	and	1 x + 12 is	5 10, then	х
	= ?										
			SHORT		VER TY	Έ	QUES	TI	ONS		
0 1	The followin	a tabl	e chow	s the w		N 2 C	loc dra	wn	by numbe	or of	
Q.I	workers in a	a facto	e show	l the m	edian o	vay	he follo	wir	by numbe na data		
			, , , , , , , , , , , , , , , , , , ,					, vv II		1	1
	Weekly wag	ges (in	Rs.)	0-100	100-20	00	200-3	00	300-400	400-500	
	No. of work	ers		40	39		34		30	45	-
					<u> </u>	4-					
Q.2	The A.M of	the fo	llowing	distrib	ution is	5 47	7. Dete	erm	ine the va	lue of P.	
	Classes	0-20	20-40	40-60	60-80	80	-100]			
	Frequency	8	15	20	Р	5					

Q .3	For the following distribution,									
	Class	0-5	5-10	10-15	15-20	20-25				
	Frequency	10	15	12	20	9				
	the sum of lo	wer limits of	the median	class and m	odal class is					
Q.4	Consider the	following dist	tribution							
	Mar	ks obtained		Number of a	students					
		ks obtained			students					
	Mor	e than or eq	ual to 0	63						
	Mor	e than or eq	ual to 10	58						
	Mor	e than or eq	ual to 20	55						
	Mor	e than or eq	ual to 30	51						
	Mor	e than or eq	ual to 40	48						
	Mor	e than or eq	ual to 50	42						
	the frequency	/ of the class	30-40 is?							
Q .5	Find the med	ian of the fol	lowing data:	:						
		Marks	I	Frequency						
		Less than	10	0						
		Less than	30	10						
		Less than	50	25						
		Less than	70 4	43						
		Less than	90	65						
		Less than	110	87						
		Less than	130	96						
		Less than	150	100						
Q 6	The class ma	rks of a frequ	uency distrib	oution are						
-	104,114,124,	134,144,154	1,164. Find t	he class size	e and class in	tervals.				
		-								

Q 7	Find the mean of the following distribution											
	x	5	10	15	20		25					
	f	4	12	20	28		36					
Q 8	The mean weight per student in a group of 7 students is 55 kg. The individual weights of 6 of them in kg are 52, 54, 55, 53, 56, 54. Find the weight of the seventh student.											
Q 9	Given are the scores (out of 25) of 9 students in a Monday test : 14, 25, 17, 22, 20, 19, 10, 8 and 23 Find the mean score and median score of the data.											
Q 10	Obtain the mean of the following distribution and also find the mode.											
	Marks obto (out of 60)	ained	5	15 2	20 3.	5	40	45	50	60		
	No. of stud	lents	7	10	6 8	ž	12	3	5	4		
			LONG	G ANSV	VER T	PE	QUE	STION	IS			
Q 1	Following of a multi-	table s -story	shows t building	he daily g. The r	v pocke nean o	t al	lowan e pocl	ces giv <et allo<="" td=""><td>/en owai</td><td>to the nces i</td><td>e ch s Rs</td><td>ildren 5. 18.</td></et>	/en owai	to the nces i	e ch s Rs	ildren 5. 18.
	Find out t	he mis	sing fre	equency	' .							
	Class Inte	rval	11-13	13-15	15-17	17	'-19	19-21	2	1-23	23	-25
	Frequency	/	3	6	9	-	13	?		5		4
Q 2	The perce are given	entage below:	of mar	ks obta	ined by	10)0 stu	dents i	n ai	n exa	mina	ation
	Mark	S	30-35	35-40	40-4	5	45-50	50-!	55	55-6	0 0	60-65
	Freque	ncy	14	16	18		23	18	;	8		3
	Determine	e the m	nedian	percent	age of	ma	rks.					

Q 3	The following frequency distribution gives the monthly consumption of							
	electricity of 68 consum	ners of a l	ocality.					
	Monthly consumption	on (in unit	s) Num	Number of consumers				
	65 – 85		4					
	85-105		5					
	105-125		13					
	125-145		20					
	145-165		14					
	165-185	165-185						
	185-205		4					
	Find the median, mear	n and moo	le of the o	data and o	compare t	hem.		
Q 4	In a retail market, fruit	vendors	were sellir	ng mango	es kept ir	n packing		
	boxes. These boxes cor	ntained va	rying nun	nber of m	angoes. T	he		
	following was the distri	bution of	mangoes	according	to the nu	umber of		
	boxes.							
	Number of mangoes	50 - 52	53 - 55	56 - 58	59 - 61	62 - 64		
	Number of boxes	110	135	115	25			
	Find the mean number	· of mange	oes kept i	n a packir	ng box. W	hich		
	method of finding the n	nean did y	you choos	e?				
Q 5	Thirty women were exa	mined in	a hospital	l by a doc	tor and th	ne numbe	er	
	of heartbeats per minut	te was rec	corded and	d summaı	rised as fo	ollows. Fir	nd	
	the mean heartbeats pe	er minute	for these	women, o	choosing a	a suitable	9	
	method.							

	Numl heart beats minu	ber of : s per te	65- 68	68- 71	71- 74	74- 77	77- 80	80- 83	83- 86
	Numl wom	ber of en	2	4	3	8	7	4	2
Q 6	A surv was co	vey reg onducte Heiah	arding t d and tl t (in cm	he heig ne follov	hts (in c ving dat Num	m) of 5 a were o	1 girls o obtained irls	f Class >	K of a school
		Less than 140			4	4			
		Less than 145			11	11			
		Less than 150			29	29			
		Less t	ess than 155		40	40			
		Less than 160		46	46				
		Less than 165		51	51				
	Find the median height.								

Q 7	If the median	of a c	listrib	ution g	jiven b	elow i	s 28.5	then,	, find th	e value of
	an x &y.									
		C	lace Ir	ntorval		Fro	nuency	,		
			1055 11			-	lacity			
		0	-10			5				
		1	0-20			Х				
		2	0-30			20				
		3	0-40			15				
		4	0-50			Y				
		5	0-60			5				
		Т	otal			60				
Q 8	The following	table	shows	the d	istribul	ion o	f weigł	nts of	100 car	ndidates
	appearing for	a con	npetiti	on. De	termin	e the	modal	weig	ht.	
	Weight (in kg)	50-5	55 55	-60 6	065	5-70	70-75	75-80		
	No. of candidates	13	1	18	45	16	6	2		
09	The following	data d	aives t	he info	ormatio	on on	the ob	serve	d lifetin	nes (in
	hours) of 225	electi	rical co	ompon	ents:					
	Lifetimes (in ho	urs)	0 -	20 -	40 -	60 -	- 80)	100 -	1
	-		20	40	60	80	10	00	120	
	Frequency		10	35	52	61	3	8	29	
	Determine the	e mod	al lifet	imes c	of the c	ompo	onents.			
0.10	A student note	ed the	num	her of	cars na	essina	throu	ah a s	spot on	a road for
Q 10	100 periods e	ach of	3 mir	nutes a	and su	nmar	ized it	in the	e table o	iven
	below. Find th	ie mo	de of t	he dat	a:	-				_
	Number of	0 -	10 -	20 -	30 -	40 -	50 -	- 60	- 70	- 1
	cars	10	20	30	40	50	60	7	0 80	
	Frequency	7	14	13	12	20	11	1	5 8	

CHAPTER: 14

STATISTICS

SOLUTION OF THE PROBLEM

	SOLUTIONS TO COMPETENCY BASED QUESTIONS						
Ans 1	(d) Remains the same as that of the original set.						
	Hint:						
	No. of observations = 9						
	\therefore median = 5th observation						
	\cdot The largest four observations are increased						
	\therefore 5th observation remains unchanged.						
Ans 2	(b) centred at the classmarks of the classes						
Ans 3	Option d is correct						
Ans 4	(c) 82						
	Explanation: The number of athletes who completed the race in less						
	than 14.6 seconds = $2 + 4 + 5 + 71 = 82$						
Ans 5	Consider x and y as the upper and lower class limit in a frequency						
	distribution.						
	It is given that Mid value of a class=10						
	(x + y)/2 = 10						
	By cross multiplication						
	$x + y = 20 \dots (1)$						
	Width of a class=6						
	x - y = 6 (2)						
	By adding both the equations						

	2x = 20 + 6							
	2x = 26 (Dividing both sides by 2)							
	x = 13							
	Substitute x value in equation (1)							
	13 + y = 20							
	y = 20 - 13, $y = 7$ Therefore, the lower limit of the class is 7.							
Ans 6	We know that							
	Width = 5							
	<u>Class marks</u> = 20							
	Lower limit = $20 - 5/2 = (40 - 5)/2 = 35/2 = 17.5$							
	In the same way							
	Upper limit = $20 + 5/2 = (40 + 5)/2 = 45/2 = 22.5$							
	Therefore, the class corresponding to the class mark 20 is 17.5 - 22.5.							
Ans 7	Correct option is B)							
	\Rightarrow Total observation is 50							
	\Rightarrow Let sum of 50 number be x							
	$\therefore \frac{x-(50\times53)}{50} = -3.5$							
	$\therefore x-2650=-3.5\times 50$							
	∴ x-2650=-175							
	$\therefore x = -175 + 2650$							
	∴ x=2475							
	\Rightarrow Original mean $=\frac{2475}{50}=49.5$							

Ans 8	(b) mode = 3 median – 2 mean						
Ans 9	Answer: c						
Ans 10	Correct option is	s B)					
	Let a be lower cl	ass limit, l is the	upper class limit and m is the mic	l-point			
	then, mid-point	$m=\frac{a+1}{2}$					
	Therefore, a=2n	n—l					
	SOLUTIONS T	O CASE STUDI	ES/ SOURCE BASED INTEGR	ATED			
	QUESTIONS						
Ans 1	(i) (b): The upp	per limit of a clas	ss and the lower class of its suc	ceeding			
	class differ by 1	L.					
	(ii) (d) : Here,	class intervals a	re in inclusive form. So, we firs	t convert			
	them in exclusi	ve form. The fre	equency distribution table in exc	lusive			
	form is as follow	WS:					
	Class interval	Frequency (f _i)	Cumulative frequency (c.f)				
	199.5-209.5	4	4				
	209.5-219.5	14	18				
	219.5-229.5	26	44				
	229.5-239.5	10	54				
	239.5-249.5	6	60				
	Here, Σfi i.e., N	=60 Here, Σfi i.	e., N=60				
	⇒N/2=30						
	Now, the class interval whose cumulative frequency is						
	just greater than 30 is 219.5 - 229.5.						
	… Median class is 219.5 - 229.5.						
	(iii) (d)						
	Median of the	distance travelle	ed is 224.12 km				
	(iv) (d): We kn	ow, Mode = 3 M	ledian - 2 Mean				
Ans 2	Given freque	ency distributior	n table can be drawn as:				

	Class interval	Class mark	Freque	ncy (f _i)	x _i f _i	c.f				
	100-120 1	.10	7		770	7				
	120-140 1	.30	12		1560	19				
	140-160 1	.50	18		2700	37				
	160-180 1	.70	13		2210	50				
	Total		50		7240					
	(i) (d): Clearly, ave	erage mileage	9							
	=7240/50=144.8	km/ charge								
	(ii) (b)									
	(iii) (b) : Here N/2=	=50/2=25 an	d the co	rrespondi	ng class	s whos				
	cumulative frequency is just greater than									
	25 is 140-160.									
	Here, $I = 140$, c.f = 19, h = 20 and f= 18									
	Median =I+ $\left(\frac{\binom{n}{2}-c.f.}{f}\right)$ ×h									
	=146.67									
	(iv) (a) : Assumed mean method is useful in determining the mean.									
	(v) (a): Since, Mean = 144.S, Mode = 150.91 and Median = 146.67									
	and minimum of which is 144 approx, therefore manufacturer can									
	claim the mileage for his scooter 144 km/charge.									
}	(i) (d): Required number of persons = $9 + 6 = 15$									
	(ii) (c): Required number of persons = $6 + 8 + 2 = 16$									
	(iii) (a) : 50-60 is the modal class as the maximum frequency is 9.									
	(iv) (b) : The cumulative frequency distribution table for the given									
	data can be drawn as :									
	Salaries received (I	n Number		Cumulat	ive freq	uenc				
	percent)		ees (ti)	y c.t						
	50-60	9		9						
	60-70	6		9 + 6 =	15					
		0			22	1				

	80-90		2	23 + 2 = 25						
	Total		Σfi=25Σfi=25							
			1	I						
	Here $N/2 - 25/2 - 12.5$									
	The sumulative frequency just greater than 12 E lies in the interval									
	The cumulative frequency just greater than 12.5 lies in the interval									
	Hence	the median cla	ass is 60-70							
	(v) (a)	· We know Mo	de = 3 Median - 2 I	Mean						
	: 3 Me	dian = Mode +	2 Mean.							
Ans 4	1. c) 36	5.82								
	2. d) 4	5								
	3. d) 3	5.4								
	4. a) 4	1.4								
	5. b) 4	0.2								
Ans 5	(i) (a):	If f _i and x _i are	very small, then di	rect method	is appropriate					
	method	for calculating	g mean.							
	(ii) (a) : The frequency distribution table from the given data can be									
	drawn as :									
	Class	Class mark (x	i) Frequency fi	f _i x _i						
	3-5	4	5	20						
	5-7	6	10	60						
	7-9	8	10	80						
	9-11	10	7	70						
	11-13	12	8	96						
	Total		40	326						
	$\therefore \text{ Mean } = \Sigma \text{fixi} / \Sigma \text{fi} = 326 / 40 = 8.15 \text{ litres}$									
	(iii) (b)	: If 2000 vehi	cles comes daily an	d average qu	antity of diesel					
	require	d for a vehicle	is 8.15 litres, then	total quantity	y of diesel					

	required = 2000 x 8.15					
	= 16300 litres					
	(iv) (c) : Here N=40 and N/2=20 c.f for the distribution are 5,					
	15,25,32,40					
	Now, c.f just greater than 20 is 25 which is corresponding to the class					
	interval 7-9.					
	So median class is 7-9.					
	Required sum of upper limit and lower limit					
	= 7 + 9 = 16					
	(v) (b): We know, Mode = 3 Median -2 Mean					
	= 3(8) - 2(8.15) = 24 - 16.3 = 7.7					
	SOLUTIONS TO ODJECTIVE TYPE QUESTIONS (OTHED THAN					
	MCOc)					
	MCQS					
1	24					
2	10,25					
3	less than ogive curve					
4	88					
5	True					
6	False					
7	True					
8	False					
9	Median					
10	4					
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS					
1	We have					
	Weekly wages (in Rs.) No. of workers (f) C.F.					
	0-100		49	4	40	
----	--	---	--	-------------------------	---------------	--
	100-200		39	•	79	
	200-300		34		113	
	300-400		30		143	
	400-500		45		188	
			$N = \sum f =$	188		
	$\frac{N}{2} = \frac{183}{2}$ $\therefore \text{ Median cl}$ $l_1 = 200$ Here, We know th $= 200 + \frac{94 - 7}{34}$ 1500	$\frac{8}{2} = 94$ and this ass = 200-30 0, c = 79, h = 100 $Me = l_1 + \frac{N}{2}$ nat $\frac{9}{2} \times 100$	s is in 200-30 0 0, $f = 34$, $\frac{N}{2} = 9$ $\frac{1}{F} - c}{F} \times h$	0 class. 94		
	$= 200 + \frac{1300}{34}$ $= 200 + \frac{750}{17} =$ $= 244.12$	1.Com ≽200+14.12				
2.	We have					
	Class Interval	Mid- value (x_i)	Frequency (f_i)	$f_i x_i$		
	0-20	10	8	80		
	20-40	30	15	450		
	40-60	50	20	1000		
	60-80	70	Р	70P		
	80-100	90	5	450		
			$\sum f_i = 48 + P$	$\sum f_i x_i = 1980 +$	- 70 <i>P</i>	

	$\frac{1}{x} = \frac{\sum f_i x_i}{\sum i}$
	Since Mean, Σf_i
	$\Rightarrow 47 = \frac{1980 + 70P}{100 + 70P}$
	48 + P $\Rightarrow 2256 + 47P = 1980 + 70P$
	$\Rightarrow 70P + 47P = 2250 - 1980$
	$\Rightarrow 23P = 276$
	$\Rightarrow P = \frac{276}{23} = 12$
	Thus, P = 12
3	C.F.=66, now N/2=33, which lies in the interval 10-15 therefore lower
	limit of the median class is 10.
	The highest frequency is 20. which lies in the interval 15-20. Therefore
	lower limit of modal class is 15. Hence required sum is 10+15=25.
4	Even win the class interval 20, 40 is 2
4	Frequency in the class interval 30-40 is 3
5	76.36
6	Since the class marks are equally spaced. Class size = $114 - 104 = 10$
	Material design of the second se
	in <i>a</i> is a class mark and <i>h</i> is size of class interval, then lower limit and upper limit of the class interval, then lower limit and upper limit of the class
	$\therefore We have h = 10$
	\therefore Lower limit of first class interval = $104 - \frac{10}{2} = 99$
	Upper limit of first class interval = $104 + \frac{10}{2} = 109$
	\therefore First class interval is 99 – 109
	149 - 159, 159 - 169.
7	mean $(\overline{x}) = \frac{\Sigma f x}{1 - 1}$
	$\sum_{x \in \Sigma} \sum_{x
	1900 10
	$=\frac{100}{100} = 19$
0	
ð	σική
9	Mean score 17.5

	Median 19 marks						
10	Mean 30.73	3					
	Mode 40 marks						
	SOLUTION	IS TO LONG		ER TY	(PE QUE	STIONS	
1	Let the mis	ssing freque	ncy = f,	we ha	ave		
	Class	£	Mid-	x	$a_i - a_i x_i - 1$	18	
	interval	Ji	value	$u_i = -$	h 2	- I _i u _i	
	11-13	3	12	-3		-9	
	13-15	6	14	-2		-12	
	15-17	9	16	-1		-9	
	17-19	13	18	0		0	
	19-21	F	20	1		F	
	21-32	5	22	2		10	
	23-25	4	24	3		12	
		$\sum f_i = 40 + f$				$\sum f_i u_i = f -$	- 8
	Let assume	d mean a =	18, Here	e h =	2	I	
		\overline{x} =	$a + \frac{\sum fix}{\sum fix}$	i -×h			
	We know th	nat mean	$\sum fi$				
	$\Rightarrow 18 = 18 + \frac{(3)}{4}$	$\frac{f-8}{2+c} \times 2$					
	$\Rightarrow 0 = f - 8$	0+5					
	$\Rightarrow f = 8$						
	Hence, mis	sing frequen	cy = 8				
2	Class	Mid-	Freque	าсง	Deviatio	Product	
	interval	(x_i)	(f_i)	,	n	(fd)	
		value	(51)		$d_i = x_i - a$	()1-1)	
	0-4	2	2		-12	-24	
	4-8	6	5		-8	-40	
	8-12	10	8		-4	-32	
	12-16	14	16		0	0	

	16-20	18	14	4	56	
	20-24	22	10	8	80	
	24-28	26	8	12	96	
	28-32	30	3	16	48	
	Total		$\sum f_i = 66$		$\sum f_i d_i = 184$	
	We know th = $14 + \frac{184}{66}$ = $14 + 2.866$ = 16.866 Therefore $\frac{7}{2}$ l_1 (The lower c (The cumute 48 f (The frequence h (The classes) = $l_1 - \frac{1}{23}$ = $45 + \left(\frac{50 - 4}{23}\right)$ = $45 + \frac{10}{23} = 45$ So, the mean	hat Mean $\bar{x} = 0$ at Mean $\bar{x} = 0$ which r limit of the lative freque ency of the M size) = 5 $\left[\frac{n}{2} - c}{f}\right]h$ $\frac{8}{2} \times 5$ 5.4 dian percenta	$a + \frac{\sum f_i d_i}{\sum f_i}$ lies in the cla median class ency of the cla fedian class)=	ss 45-50) = 45 ass prece = 23	ding the med	dian class) =
2			the fellowing	ualation	is used Tal	ing 125 ag
٢	assumed m deviation	ean (a), di, u	uie rollowing Ji, fiui are cal	culated a	is used. Tak	step

	(f)	mark	135	N		2				
65 - 85	4	75	- 60	- 3	-12					
85 - 105	5	95	- 40	- 2	- 10					
105 - 125	13	115	- 20	- 1	- 13					
125 - 145	20	135	0	0	0					
145 - 165	14	155	20	1	14					
165 - 185	fi .	175	40	2	16					
185 - 205	4	195	60	3	12					
Total	68				7					
$\sum f_i = 68$ Class size $(h) = 20$ Mean, $\overline{x} = a + \left(\sum_{i=1}^{n} \frac{1}{68}\right)$ $= 135 + \frac{7}{68}$ $= 135 + \frac{140}{68}$ $= 137.058$	$\left(\frac{u_i}{t_i}\right) \times h$									
Mode -135.7 Median-137	6									
Mode -135.7 Median-137 It can be obs	6 served t	that d	class in	terva	ls are	not c	ontinuou	ıs. Th	ere is	; a
Mode -135.7 Median-137 It can be obs gap of 1 bet	served tween tv	that o	class in	terva	ls are . Ther	not c	ontinuou , 1/2 has	ıs. Th s to b	ere is e add	; a ed
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper	served tween two class li	that o vo cla mit a	class in ass inte nd 1/2	terva rvals has t	ls are . Ther to be	not c efore subtra	ontinuou , 1/2 has acted fro	is. Th s to b m the	ere is e add e lowe	; a ed er
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of	served tween tw class li each ir	that o vo cla mit a nterva	class in ass inte nd 1/2 al. Clas	terva rvals has t	ls are . Ther to be e (h) c	not c efore subtra	ontinuou , 1/2 has acted fro	is. Th s to b m the 3 Tak	ere is e add e lowe	; a ed ∋r 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me	served f ween tv class li each ir an (a),	that o vo cla mit a nterva di, u	class in ass inte nd 1/2 al. Clas i, fiui a	terva rvals has t s size re ca	Is are . Ther to be e (h) c	not c efore subtra of this ed as	ontinuou , 1/2 has acted fro data = follows.	is. Th s to b m the 3 Tak	ere is e add e lowe sing 5	s a ed er 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval	served f ween tv class li each ir an (a),	that o vo cla mit a nterva di, u xı	class in ass inte nd 1/2 al. Clas i, fiui a d _i = x _i	terva rvals has t s size re ca - 57	ls are . Ther to be e (h) d lculato	not c refore subtra of this ed as $u_i = \frac{di}{3}$	ontinuou , 1/2 has acted fro a data = follows.	is. Th s to b m the 3 Tak	ere is e add e lowe	s a ed ≥r 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval 49.5 - 52.5	served f ween tv class li each ir ean (a), fi	that o vo cla mit a nterva di, u xi	class in ass inte nd 1/2 al. Clas i, fiui a di = xi	tervals has t s size re ca - 57	ls are . Ther to be e (h) c lculato	not of refore subtration of this ed as $u_i = \frac{di}{3}$	ontinuou , 1/2 has acted fro adata = follows.	is. Th s to b m the 3 Tak	ere is e add e lowe	s a ed er 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval 49.5 - 52.5 52.5 - 55.5	served f ween tw class li each ir ean (a), fi 15	that o vo cla mit a nterva di, u <i>xi</i> 51	class in ass inte nd 1/2 al. Clas i, fiui a di= xi	terva rvals has t s size re ca - 57 - 6 - 3	ls are . Ther to be e (h) d lculate	not c refore subtra of this ed as $u_i = \frac{di}{3}$ -2 -1	ontinuou , 1/2 has acted fro data = follows. <i>fiui</i> - 30 - 110	is. Th s to b m th 3 Tak	ere is e add e lowe	s a ed er 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval 49.5 - 52.5 52.5 - 58.5	served f ween tv class li each ir an (a), fi 110 135	that o vo cla mit a nterva di, u <i>xi</i> 51 54 54	class in ass inte nd 1/2 al. Clas i, fiui a di = xi	tervals has t s size re ca - 57 - 6 - 3 0	ls are . Ther to be e (h) d lculato	not c refore subtra of this ed as $a_i = \frac{di}{3}$ -2 -1	continuou , $1/2$ has acted fro a data = follows. fuu - 30 - 110 0	is. Th s to b m th 3 Tak	ere is e add e lowe	s a ed er 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval 49.5 - 52.5 52.5 - 55.5 55.5 - 58.5 58.5 - 61.5	6 served t ween tv class li each ir an (a), f 15 110 135 115	that o vo cla mit a nterva di, u xi 51 54 57 60	class in ass inte nd 1/2 al. Clas i, fiui a $d_i = x_i$	tervals has t rs size re ca - 57 - 6 - 3 0 3	ls are . Ther to be e (h) d lculato	not c refore subtra of this ed as $a_i = \frac{di}{3}$ -2 -1 0 1	continuou , $1/2$ has acted fro acted fro adata = follows. <i>fiur</i> - 30 - 110 0 115	is. Th s to b m th 3 Tak	e add e lowe	s a ed er 7 as
Mode -135.7 Median-137 It can be obs gap of 1 bet to the upper class limit of assumed me Class interval 49.5 - 52.5 52.5 - 55.5 55.5 - 58.5 58.5 - 61.5 61.5 - 64.5	6 served t ween tv class li each ir an (a), f 15 110 135 115 25	that o vo cla mit a nterva di, u <i>xi</i> 51 54 57 60 63	class in ass inte nd 1/2 al. Clas i, fiui a $d_i = x_i$	tervals has t is size re ca - 57 - 6 - 3 0 3 6	ls are . Ther to be e (h) d lculate	not c refore subtra of this ed as $u_i = \frac{di}{3}$ -2 -1 0 1 2	continuou , $1/2$ has acted fro acted fro data = follows. <i>fiui</i> - 30 - 110 0 115 50	is. Th s to b m the 3 Tak	ere is e add e lowe	s a ed er 7 as

	$= 57 + \frac{3}{16} = 57.1875 = 57.19$	= 57 + 0.1875			
Frc x _i = Cla No	m the given = (Upper limit ss size (h) = w, find the u _i	data, let us t + Lower li 3 and f _i u _i as	assume th mit)/2 follows:	ne mean as A	= 75.5
	Class Interval	Numbe r of wome n (f _i)	Mid- point (x _i)	u _i = (x _i – 75.5)/h	fiUi
	65-68	2	66.5	-3	-6
	68-71	4	69.5	-2	-8
	71-74	3	72.5	-1	-3
	74-77	8	75.5	0	0
	77-80	7	78.5	1	7
	80-83	4	81.5	2	8
	83-86	2	84.5	3	6
		Sum f _i = 30			Sum f _i u _i = 4

	= 75.	5 + 3×(4/30)								
	75.5	5.5 + 4/10								
	= 75.	5 + 0.4								
	= 75.	.9								
	There	fore, the mean heartbe	ats per minute for t	hese women is 75.9						
6	To ca	Iculate the median heig	ht, we need to find	the class intervals a	nd					
	The g	iven distribution is of the	ie less than type, 14 corresponding class	40, 145, 150,, 16 s intervals.	5					
	gives the upper limits of the corresponding class intervals. So, the classes should be below 140, 140 – 145, 145 – 150,, 160 – 165. Observe that from the given distribution, we find that there are 4 girls with height less than 140, i.e., the frequency of class interval below 140 is 4. Now, there are 11 girls with heights less than 145 and 4 girls with heights less than 140. Therefore, the number of girls with height in the interval of 140 – 145 is $11 - 4 = 7$. Similarly, the frequency of 145 – 150 is $29 - 11 = 18$, for 150 – 155, it is $40 - 29 =$ 11, and so on. So, our frequency distribution table with the given									
		Class intervals	Frequency	Cumulative frequency						
		Below 140	4	4						
		140-145	7	11						
	145-150 18 29									
		150-155	11	40						
		155-160	6	46						
		160-165	5	51						

	Now n = 51. So, n/2 = 51/2 =25.5	
	This observation lies in class 145 – 150.	
	Then, I (the lower limit) = 145 ,	
	cf (the cumulative frequency of the class preceding $145 - 150) = 11$,	
	f (the frequency of the median class $145 - 150) = 18$,	
	h (the class size) = 5.	
	Using the formula,	
	$= l + (rac{rac{n}{2} - cf}{f}) imes h$	
	Median	
	we have Median	
	= 145 + 725/18 = 14903	
	- 113 1 72.3/10 - 113.03.	
	So, the median height of the girls is 149.03 cm.	
	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data,	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5 Where, $n/2 = 30$	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5 Where, $n/2 = 30$ Median class is 20 - 30 with a cumulative frequency = 25 + x	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5 Where, $n/2 = 30$ Median class is 20 - 30 with a cumulative frequency = 25 + x Lower limit of median class = 20,	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5 Where, $n/2 = 30$ Median class is 20 - 30 with a cumulative frequency = 25 + x Lower limit of median class = 20, Cf = 5 + x,	
7	So, the median height of the girls is 149.03 cm. This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.7 From the given data, n = 60 Median of the given data = 28.5 Where, $n/2 = 30$ Median class is 20 - 30 with a cumulative frequency = 25 + x Lower limit of median class = 20, Cf = 5 + x, f = 20 & h = 10	

$$= l + (\frac{3-d}{2}) \times h$$
Substitute the values
$$28.5 = 20 + 10(30 - 5 - x)/20)$$

$$8.5 = (25 - x)/2$$

$$17 = 25 - x$$
Therefore, x = 8
Now, from cumulative frequency, we can identify the value of x + y as
follows:
Since,
$$60 = 5 + 20 + 15 + 5 + x + y$$
Now, substitute the value of x, to find y
$$60 = 5 + 20 + 15 + 5 + 8 + y$$

$$y = 60 - 53$$

$$y = 7$$
Therefore, the value of x = 8 and y = 7
$$\frac{50 - 53}{16} + \frac{13}{5} + \frac{13}{6} + \frac{13}{70 - 55} + \frac{13}{6} + \frac{13}{5} + \frac{13}{60 - 60 + (\frac{1}{2} + \frac{45 - 18}{16} + 16)} \times 5 = 60 + \frac{135}{5} = 60 + 2.41 = 62.41$$
P
From the data given above, it can be observed that the maximum
class frequency is 61, belonging to class interval 60 - 80.
Therefore, modal class = 60 - 80 Lower class limit (1) of modal class = 60
Frequency (f1) of modal class = 61

	Frequency (f0) of class preceding the modal class = 52
	Frequency (f2) of class succeeding the modal class = 38
	Class size (h) = 20
	$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$
	$= 60 + \left(\frac{61 - 52}{2(61) - 52 - 38}\right)(20)$
	$= 60 + \left(\frac{9}{122 - 90}\right)(20)$ = $60 + \left(\frac{9 \times 20}{32}\right)$ = $60 + \frac{90}{16} = 60 + 5.625$ = 65.625
10	From the given data, it can be observed that the maximum class
	frequency is 20,
	belonging to 40 – 50 class intervals.
	Therefore, modal class = $40 - 50$
	Lower limit (I) of modal class = 40
	Frequency (f1) of modal class = 20
	Frequency (f0) of class preceding modal class = 12
	Frequency (f2) of class succeeding modal class = 11 :
	Class size = 10
	Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ = $40 + \left[\frac{20 - 12}{2(20) - 12 - 11}\right] \times 10$ = $40 + \left(\frac{80}{40 - 23}\right)$ = $40 + \frac{80}{17}$ = $40 + 4.7$ = 44.7

CHAPTER: 15

PROBABILITY

	CASE STUDI	ES/ SOURCE B	ASED INTEGRATE	D QUESTIONS
Q 1	Anita, Bina an 'Anita' says le first chance. tail,'Charu' w	nd Charu were fi et us toss two co If both Tails app ill get the first cl	ghting to get first cl ins. If both heads a ear 'Bina' will get it nance.	hance in a game. ppear, Anita will take & if one head & one
(i)	What is the p	robability of `Ani	ta' getting the first	chance?
	(a)1/4	(b)1/2	
	(c)1/3	(d)2/	3	
(ii)	What is the p	robability that `E	Bina' gets the first cl	hance?
	(a)1/4	(b)1/3	
	(c)1/2	(0	1)2/3	
(iii)	What is the p	robability that `c	haru' gets the first	chance?
	(a)1/4	(b)1/3	
	(c)1/2	(d)2/3	
Q2	Four persons players. A de clockwise in s	are playing a b eck of 52 playing such a way that o	ridge game forming cards is distributed each person gets 13	g teams each of two d around the table cards.
(i)	Find the prob 6.	ability of the car	d drawn by each pla	ayer with number 5 or
	(a)2/13	(b) 11/13	(c) 1/13	(d) 12/13

(ii)	Find the pro than 8.	bability of the ca	rd drawn by each	player with number less
	(a) 6/13	(b) 5/13	(c) 7/13	(d) None of these
(iii)	Find the pro between 2 a	bability of the ca nd 9.	rd drawn by each	player with number
	(a) 7/13	(b) 5/13	(c) 6/13	(d) 3/13
(iv)	What is the	probability that a	any one person ge	ts queen of spade?
	(a) 1/3	(b) 1/4 (c) 1	/2 (d)1	
Q 3	A particul applicatio smoker. <i>A</i> death cha more for Company with norn In a certa 30% are half the s purchase On the ba following	ar term insurance on form before is As a smoker has ance is comparat a smoking perso gives a rider pla nal term plan by ain time period, of for smokers and 2/5 d a rider plan alo Term I Sais of above infor questions:	e company has two suing the policy – more chance of ge ively higher. So pr n. in (i.e. for some cr paying some extra company issues 10 rest for non-smok th of non – smokin ong with a normal nsurance	vo options in the Smoker or Non- etting lung disease and remium payment is ritical diseases) along a premium money. 0 policies of which cer customers. Also, ng customers have plan.
(i)	Find the pro plan	bability that com	pany issues policy	for a smoker with rider
(ii)	Find the pro without a ric	bability that com der plan.	pany issues policy	for a non- smoker
(iii)	Find the pro rider plan .	bability that com	pany issues policy	for a smoker without a
(iv)	Find the pro rider plan.	bability that com	pany issues policy	for a non-smoker with
(v)	Compare the disease or n	e chance that a p ot .	oolicy holder (with	out rider plan) has lung

Q 4	Kite flying competition was held in the nearby society ground whose dimensions are 700m by 400m.There is a triangular park of area 400- metre square in the society ground, there is also a square pond of side 40 m in the corner of the ground. if William's kite is cut by John.						
(i)	what is the p	probability th	at the kite of	William fall i	n the park.		
(ii)	What is the	probability th	nat kite of Wil	liam fall into	the pond?		
(iii)	What is the	probability th	nat kite of Wil	liam fall in pa	ark or pond?		
(iv)	What is the	probability th	nat kite of Joh	n fall into po	nd?		
Q 5	What is the probability that kite of John fall into pond? During the admission procedure in a school, the number of students seeking admission is more than that of the seats available in the class so that school administration decides to organize a draw so that each student has equal possibility of getting admission in the school. The following category of students applied for admission. Image: Comparison of the seate student has equal possibility of getting admission in the school. The following category of students applied for admission. Image: Comparison of the seate student student has equal possibility of getting admission in the school. The following category of students applied for admission. Image: Comparison of the seate student stu						
	Service/ Social	GEN	SC	OBC	ST	EWS	
	1	60	40	25	12	00	
	3	45 20	15 17	18 12	10 8	00	
	4	18	13	10	15	10	
	TOTAL	215	135	110	70	40	

(i)	If all the admission forms are shuffled and one form is drawn			
	randomly, what is the probability that an OBC student belonging to			
	either of the categories 1,2,3 or 4 will get admission?			
(ii)	If SC and ST category's admission forms are shuffled and one form is drawn randomly, what is the probability that student from service category 1either SC or ST will get admission?			
(iii)	If General, SC, OBC and ST category's admission forms are shuffled and one form is drawn randomly, what is the probability that student from category-1 will get admission ?			
(iv)	If EWS, SC and ST category's admission forms are shuffled and one form is drawn randomly, what is the probability that student either SC or EWS student from category-3 will get admission?			
(v)	If General, SC, OBC and ST category's admission forms are shuffled and one form is drawn randomly, what is the probability that a student of EWS category will get admission?			
	COMPETENCY BASED QUESTIONS (MCQs)			
Q 1.	A ticket is drawn at random from a bag containing tickets numbered from 1 to 40. The probability that the selected ticket has a number which is a multiple of 5 is			
(i)	<u>3</u> 5			
(ii)	$\frac{1}{5}$			
(iii)	$\frac{1}{3}$			
(iv)	<u>4</u> 5			
Q2	A lot consists of 144 ball pens of which 20 are defective and the others are good. Tanu will buy a pen if it is good but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. The probability that she will buy that pen is			
(i)	<u>5</u> 36			
(ii)	$\frac{20}{36}$			
(iii)	$\frac{31}{36}$			
(iv)	$\frac{31}{144}$			
Q 3.	A child has a die whose six faces show the letters as given below:			

	А	В	С	D	E	F		
	The die is thrown once. The probability of getting a 'D' is							
(i)	$\frac{1}{2}$							
(ii)	$\frac{1}{3}$							
(iii)	$\frac{1}{4}$							
(iv)	$\frac{1}{6}$							
Q4.	A girl calculates that the probability of her winning the first prize in a lottery is $\frac{8}{100}$. If 6,000 tickets are sold, how many tickets has she bought?							
(i)	400							
(ii)	750							
(iii)	480							
(iv)	240							
Q5	The letters of the word SOCIETY are placed at random in a row. The probability of getting a vowel is							
(i)	$\frac{1}{7}$							
(ii)	$\frac{2}{7}$							
(iii)	$\frac{3}{7}$							
(iv)	$\frac{4}{7}$							
Q6	Which of the	e following	can be the	probability	of an event	?		
(i)	- 0.4							
(ii)	1.004							
(iii)	18 23							
(iv)	$\frac{10}{7}$							
Q7	The total ev	ents to thr	ow three die	ce simultan	eously is			
(i)	6							
(ii)	18							

(iii)	81
(iv)	216
Q8	If the probability of an event is P, the probability of its complementary event will be:
(i)	P - 1
(ii)	P
(iii)	1 – p
(iv)	$1 - \frac{1}{p}$
Q9	A card is selected from a deck of 52 cards. The probability of its being a red face card is:
(i)	$\frac{3}{26}$
(ii)	$\frac{3}{13}$
(iii)	$\frac{2}{13}$
(iv)	$\frac{1}{2}$
Q10	Two players, Sangeeta and Reshma, play a tennis match. It is known that the probability of Sangeeta winning the match is 0.62. The probability of Reshma winning the match is
(i)	0.62
(ii)	0.38
(iii)	0.58
(iv)	0.42
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	In the single throw of a die , what will be the probability of getting a number which is less than 7?
Q 2	A coin is tossed twice , the probability of getting atleast a head is
Q 3	In a game of shooting if a person hits a target 7 times and missed it by 28 times , then the probability that he missed the target is
Q 4	A bag contains X white balls , 15 red balls and Y black balls. A ball is drawn at random from the bag . If the probability that the drawn ball is

	white , is 4/15 and that of red ball is 1/3 $$, then the values of X and Y are respectively
Q 5	One card is selected from a well shuffled deck of cards . The probability that it is a red jack is
Q 6	The probability of getting a doublet when two different dice are tossed together is 1/6 (True /False)
Q 7	When two different dice tossed together , probability of getting a sum 10 is 5/6 (True /False)
	Q8. In a single throw of a pair of dice , the probability of getting a prime number on each dice is
Q 8	In a single throw of a pair of dice , the probability of getting a prime number on each dice is
Q 9	The probability expressed as a percentage of a particular occurrence can never be or
Q 10	The probability of getting an odd number less than 3 when a die is thrown is $1/3$ (True /False)
	SHORT ANSWER TYPE QUESTIONS
Q 1	The probability of selecting a red ball at random from a jar that contains only red , blue and orange balls is ¼ . The probability of selecting a blue ball at random from the same jar is 1/3 . If the jar contains 10 orange balls , find the total number of balls in the jar .
Q 2	Neha and Nisha are playing Balut game with two dice. Each has her own dice. Two different dice are thrown together. Find the probability of the number obtained:
	(i)even sum
	(ii)even product
Q 3	At the kitty party, some ladies decided to play the tambola game. They have a box with 90 cards A box contains cards, number 1 to 90. A card is drawn at random from the box. Find the probability that the selected card bear a :
	(1) Two digit number.
	(2) Perfect square number
Q 4	Ruhi's father organised a magic show in her birthday party. Various magics by magician are shown using coloured balls, Magician has a bag. That bag contains 15 white and some black balls. If the

	probability of drawing a black ball from the bag is thrice that of drawing a white ball, find the number of black balls in the bag.							
Q 5	Following are the marks obtained (Out of 50) by the students in a class							
		M	IARKS	Numb of studer	er nts			
		1 2 3	0-20 0-30 0-40	8 X 9				
	One student from that his marks is of x is ?	the class 20 or mor	0-50 is select e but les	6 ed at ra s than	andor 40, is	m. If tl s 5/7 ,	he pi the	robability n the value
Q 6	Two coins are tos below :	ssed 500 ti	mes and	thw ou	utcom	nes are	e rec	orded as
	Number of tails	0	1		2			
	Frequency	120	175		205	_		
	Based on this info	ormation,	the prob	ability	for at	tleast	1 tai	l is ?
Q 7	In a medical examination of students of a class , the following blood groups are recorded:					ving blood		
	Blood group	А	В	0		AB		
	Number of students	35	28	19		13		
	A student is seled he/she has the b	cted at ran lood group	dom fror other th	m the c nan `O'	lass . is	The p ?	oroba	bility that
Q 8	One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will					Calculate the		
	(i) be an ace,							
	(ii) not be an ace							
Q 9	An integer is cho is	sen betwee	en 0 and	100. V	Vhat i	is the	prob	ability that it
	(i) divisible by 7?	,						
	(ii) not divisible t	y 7?						
Q 10	The probability o apples is 0.18. W	f selecting hat is the	a rotten number	apple i of rotte	rando en ap	omly fr ples in	om a the	a heap of 900 heap?

	LONG ANSWER TYPE QUESTIONS
Q 1	A bag contains 18 balls out of which x balls are red.
	(i) If one ball is drawn at random from the bag, what is the probability that it is not red?
	(ii) If 2 more red balls are put in the bag, the probability of drawing a red ball will be $9/8$ times the probability of drawing a red ball in the first case. Find the value of x.
Q 2	Cards numbered 1 to 30 are put in a bag. A card is drawn at random. Find the probability that the drawn card is
	(i) prime number>7
	(ii) not a perfect square.
Q 3	Two different dice are thrown together. Find the probability that the numbers obtained.
	(i)Have a sum less than 7.
	(ii) Have a product less than 16.
	(iii) Is a doublet of odd numbers.
Q 4	One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting
	(a) Non face card
	(b) Black king or a Red queen
	(c) Spade card.
Q 5	Two dice are numbered 1, 2, 3, 4, 5, 6 and 1, 1, 2, 2, 3, 3, respectively. They are thrown, and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 4separately.
Q 6	A card is drawn at random from a well shuffled deck of playing cards. Find the probability that the card drawn is
	(i) A card of spade or an ace.
	(ii) A black king.
	(iii) Neither a jack nor a king.
	(iv) Either a king or a queen.

Q 7	Five cards, the ten, jack, queen, king and ace of diamonds, are well shuffled with their faces downwards. One card is then picked up at random.			
	(a) What is the probability that the drawn card is the queen?			
	(b) If the queen is drawn and put aside, and a second card is drawn, find the probability that the second card is			
	(i) an ace (ii) a queen.			
Q 8	All the red face cards are removed from a pack of 52 playing cards. A card is drawn at random from the remaining cards, after reshuffling them. Find the probability that the drawn card is :			
	(i) of red colour			
	(ii) a queen			
	(iii) an ace			
	(iv) a face card			
Q 9	Cards numbered from 11 to 60 are kept in a box. If a card is drawn at random from the box, find the probability that the number on the drawn card is:			
	(i) an odd number			
	(ii) a perfect square number			
	(iii) divisible by 5			
	(iv) a prime number less than 20			
Q 10	All the black face cards are removed from a pack of 52 playing cards. The remaining cards are well shuffled and then a card is drawn at random. Find the probability of getting a:			
	(i) face card			
	(ii) red card			
	(iii) black card			
	(iv) king			

CHAPTER-15

PROBABILITY

SOLUTION OF THE PROBLEM

	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED						
	QUESTIONS						
Ans 1	(1) ¼		(2) 1⁄4		(3) ½		
Ans2	(i)2/13	(ii)6/13	(iii) 6/13	(iv)1/4			
Ans3	(i) 15/100 (v) 15/42	(ii)42/100	(iii) 15/100	(iv) 28/100			
Ans4	(i)1/700	(ii)1/175	(iii)1/140	(iv) 0			
Ans5	(i) 65/570 (v) 0	(ii)52/205	(iii) 137/450	(iv) 29/245			
	SOLUTIONS	TO COMPET	ENCY BASED Q	UESTIONS (MC	<u>Qs)</u>		
Ans1	1/5						
Ans2	31/36						
Ans3	1/6						
Ans4	480						
Ans5	3/7						
Ans6	$\frac{18}{23}$						
Ans7	$(6)^3 = 216$						
Ans8	(c) 1 – p						
Ans9	(a) $\frac{3}{26}$						
Ans10	(b) 0.38						
	SOLUTIONS	TO OBJECTI	VE TYPE QUES	TIONS (OTHER	THAN		
	<u>MCQs)</u>						
Ans1	1						
Ans2	3⁄4						
Ans3	4/5						

Ans4	12 and 18
Ans5	1/26
Ans6	True
Ans7	False
Ans8	1⁄4
Ans9	negative or more than 100%
Ans10	False
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans1	24
Ans2	(i)½ (ii)3/4
Ans3	(i)81/90 (ii)9/90
Ans4	45
Ans5	26
Ans6	19/25
Ans7	4/5
Ans8	(i)1/13 (ii) 12/13
Ans9	(i) 14/99 (ii)85/99
Ans10	162
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans1	(i)1 $-\frac{x}{8}$
	(ii)x= 8
Ans2	(i) 1/5
	(ii)5/6
Ans3	(i)5/12
	(ii) 25/36
	(iii)1/12
Ans4	(a)10/13

	(b) 1/13
	(c) 1/4
Ans5	1/18 ; 1/9 ; 1/6
Ans6	(i) 4/13
	(ii) 1/26
	(iii)11/13
	(iv)2/13
Ans7	(a) 1/5
	(b)(i) ¼
	(ii) 0
Ans8	(i) 10/23
	(ii) 1/23
	(iii)2/23
	(iv)3/13
Ans9	(i) ½
	(ii) 2/25
	(iii) 2/25
	(iv) 4/25
Ans10	(i) 3/23
	(ii) 13/23
	(iii) 10/23
	(iv)1/23